Обработка и передача дискретных сообщений, лекции и материалы, страница 132

Коэффициент при х в произведении  равен

.

Слагаемые, содержащие , появляются вследствие слагаемых в произведении , которые содержат . Но так как , т.е. , то . Равенство для можно представить в виде скалярного произведения:

.

В этом произведении первый вектор соответствует а(х). Второй вектор содержит коэффициенты b(х), расположенные в обратном порядке и сдвинутые циклически на j+1 элемент вправо.

Таким образом, если произведение  равно нулю, то вектор, соответствующий многочлену а(х), ортогонален вектору, соответствующему многочлену b(х), компоненты которого расположены в обратном порядке, и кроме того каждому циклическому сдвигу этого вектора. Верно также и обратное утверждение. Если вектор  ортогонален вектору  и каждому циклическому сдвигу этого вектора, то

.

Учитывая эту специфику необходимо при матричном описании кода коэффициенты матрицы проверок записывать в обратном порядке. В этом случае будет выполнено условие

Пример 6.5. Построить матрицу проверок для циклического (7,4) – кода из предыдущего примера.

Для построения матрицы проверок найдем проверочный многочлен

 Отсюда