Обработка и передача дискретных сообщений, лекции и материалы, страница 101

         В силу этого рассматриваемые коды получили название смежно-групповых.

Следует иметь в виду, что смежно-групповой код существует только в дискретном канале. Процедуры кодирования и декодирования при использовании смежно-групповых кодов осуществляются как аналогичные операции для групповых кодов. Инвертирование разрядов кодовой комбинации, т.е замена ее комбинацией смежного класса, выполняется на выходе кодера, и обратная операция- на входе декодера.

В связи с этим важно оценить повлияет ли переход от кодовых комбинаций к комбинациям смежного класса в дискретном канале на помехоустойчивость кода.

Теория групповых кодов полностью определяет свойства смежно-групповых кодов. Легко показать, что корректирующие свойства смежно-групповых кодов не отличаются от корректирующих свойств групповых кодов, из которых они получены. Рассмотрим кодовое расстояние в смежно-групповом коде. и  - две произвольные комбинации смежно-группового кода с образующим с. Тогда каждая из этих комбинаций может быть представлена через комбинацию исходного группового кода:

.   Их сумма:

равна комбинации исходного группового кода. Следовательно, расстояние между двумя любыми комбинациями смежно-группового кода определяется весом одной их кодовых комбинаций исходного группового кода.Итак, справедлива теорема:

         Теорема 5.2. Кодовые расстояния смежно-группового кода совпадают с кодовыми расстояниями исходного группового кода. Это означает, что помехоустойчивость смежно-групповых кодов эквивалента помехоустойчивости исходных групповых кодов.

5.3.6. Задачи

1. Показать, что условие существования совершенных кодов задается границей Хэмминга.

2. Какие из перечисленных кодов, удовлетворяют условию совершенных

а)(23,12)-код,  dmin=7,

б)(17,9)-код,dmin=7,

в)(63,57)-код,dmin=3,

г)(63,51)-код,dmin=5,

д)(7,4)-код,dmin=3.

3. Чему равно минимальное кодовое расстояние для (7, 4) – кода с проверочной матрицей