Обработка и передача дискретных сообщений, лекции и материалы, страница 123

Поле, образованное шестнадцатью двоичными последовательностями длины 4, или многочленами степени 3 и менее с коэффициентами из GF(2) по модулю многочлена α4+α+1 , неприводимого над GF(2), является примером расширенного поля GF(24), которое может быть обозначено также GF(16)

Важнейшим свойством конечных полей является следующее.

Множество всех ненулевых элементов конечного поля образует группу по операции умножения, т.е. мультипликативную группу порядка q–1.

Рассмотрим совокупность элементов мультипликативной группы, образованную некоторым элементом α и всеми его степенями α2, α3 и т.д. Так как группа конечна, должно появиться повторение, т.е. αi=αj. Умножая это равенство на (αi)–1 = (α–1)i, получим 1=αj-i. Следовательно, некоторая степень α равна 1.

Наименьшее положительное число e, такое, что αe=1, называется порядком элемента α. Совокупность элементов 1, α, α2,…, αe–1 образует подгруппу, поскольку произведение любых двух элементов принадлежит этой совокупности, а элемент, обратный αj, равен αej и тоже входит в эту совокупность.

Группа, которая состоит из всех степеней одного из ее элементов, называется циклической группой.


Из рассмотренного свойства конечных полей вытекают два важных следствия.

Первое из них утверждает, что многочлен xq–1–1 имеет своими корнями все q–1 ненулевых элементов поля GF(q), т.е.

В поле GF(q) элемент α, имеющий порядок e=q–1, называется примитивным. Отсюда следует, что любой ненулевой элемент GF(q) является степенью примитивного элемента. Второе следствие из рассмотренного свойства утверждает, что любое конечное поле GF(q) содержит примитивный элемент, т.е. мультипликативная группа GF(q). является циклической