и т.д.
Очевидно, что минимальная длина кода Хэмминга, имеющего практическое значение, есть 3. При увеличении n отношение возрастает и стремится к 1.
Пример 5.14. Рассмотрим код Хэмминга (7,4). Матрица проверок этого кода состоит из 7 трехразрядных двоичных чисел от 1 до 7:
.
Из рассмотрения этой матрицы видно, что минимальное число линейно зависимых столбцов равно 3( к примеру 1, 2 и 3), следовательно, dmin=3.
В том случае, когда столбцы матрицы H(n,k) – кода Хэмминга есть упорядоченная запись m – разрядных двоичных чисел, декодирование осуществляется оригинальным образом. В результате вычисления проверочного соотношения для кодовой комбинации , имеющей одиночную ошибку, получается синдром в точности равный номеру элемента, в котором произошла ошибка.
Действительно, если ei содержит одну единицу в разряде, соответствующем ошибочному элементу, то при умножении на матрицу НТ все строки матрицы НТ, соответствующие нулям в ei, обращаются в нули, и лишь строка, соответствующая “1” в ei сохраняет свой вид (т.е. порядковый номер элемента в двоичной записи) в ответе.
Пример 5.15. Пусть приемник УЗО системы передачи данных зарегистрировал комбинацию . Вычисление синдрома дает
,
т.е. ошибка в четвертом элементе и кодовая комбинация кода (7,4), которая была передана, имеет вид:
Путем несложных преобразований из (n, k) – кода Хэмминга с dmin=3 можно получить (n+1, k) – код Хэмминга с dmin=4.
Для этого в кодовую комбинацию вводится избыточный элемент, являющийся результатом проверки на четность по всем элементам кодовой комбинации. Число информационных элементов остается прежним.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.