Приведенные примеры сходов с рельсов и крушений из практики отечественных железных дорог с полной очевидностью свидетельствуют о том, что крушения поездов из-за выбросов бесстыкового пути под движущимися поездами были и могут возникать в будущем, если не будут приняты соответствующие меры по их предотвращению.
Все приведенные факты не могут быть неизвестны тем, кто утверждает, что невозможны выбросы и, как их следствие, крушения под движущимися поездами. Несоответствие теоретических положений, на которых базируется гипотеза о невозможности выброса бесстыкового пути под поездами [2], реальным процессам заключается, во-первых, в том, что, как утверждает ее автор, «при расследовании крушений и аварий поездов на бесстыковом пути необходимо руководствоваться прежде всего законами механики с проявлением потенциальной энергии (подчеркнуто мною. — М. В.), накапливаемой в рельсовых плетях от нагревания» [2]. Это означает исключение из рассмотрения всех других сил и перемещений во времени, влияющих на кинетику механических процессов сил и моментов сил инерции в конструктивных элементах пути и вагона, динамических сил угона в рельсовых плетях и еще ряда механических факторов, входящих в единую механическую систему путь — подвижной состав.
Во-вторых, в расчетной схеме реальная конструкция вагонов, состоящих из кузова, отдельных тележек, колесных пар, рессорного подвешивания и т. п., заменена неким неопределенным понятием «пригруз», не имеющим конкретного смысла с точки зрения механики. Между тем опыты, проведенные Федеральной железнодорожной администрацией США [4], показали, что наличие движущегося экипажа, создающего динамическую нагрузку, может весьма заметно понижать устойчивость бесстыкового пути по сравнению с той, которая у него была при отсутствии поездной нагрузки (рис. 1). Это происходит из-за образования волны подъема рельсо-шпальной решетки над ее основанием. При большой длине вагонов температура динамического выброса пути может быть на 20 – 30 % ниже соответствующей для статики. Как указывает в своей статье А. Зарембски, это согласуется и с результатами опытов, проводившихся в Западной Европе.
Рис. 1. Боковое сопротивление пути под открытым хоппером:1 — в статике (без экипажа); 2 — при поднятии рельсо-шпальной решетки под поездом |
В-третьих, автором гипотезы из рассмотрения исключается продолжительность прохождения межтележечными пространствами вагонов по горизонтальным и вертикальным неровностям пути; однако в ряде случаев возможен практически мгновенный выброс рельсо-шпальной решетки, когда продольные силы в плетях находятся на критическом уровне.
Кроме того, при некоторых размерах и формах неровностей в продольном профиле рельсовых плетей, в случае действия в рельсовых плетях больших продольных сжимающих сил, происходят отрыв некоторых подошв шпал, прекращение действия на них вертикальных нагрузок, а иногда и отрыв некоторых групп шпал от балластных постелей. Это вполне может произойти в момент прохода данного места межтележечными пространствами, а в результате сопротивление таких шпал поперечному сдвигу становится практически равным нулю [5].
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.