9, —Tq~;1-1 <r p
у£ 1 Lу i) I ^ Ь2»
где 8i и 82 — заданная точность вычисления соответственно устьевых давления и температуры; q — номер шага итераций, 7=1,2, ...,/.
16. Если заданная точность вычисления устьевых параметров не достигнута, вычисления продолжаются. Для этого заменяют начальные устьевые параметры в начале нового цикла вычисления, принимая за них устьевые параметры, полученные в результате предыдущего цикла их вычислений (ру ц'= /?у7/\ Tqy ij = Гу~/) ,
107
и переходят к новому циклу. При этом повторяется весь порядок вычисления устьевых параметров.
17. При достижении заданной точности вычисления устьевых параметров расчет заканчивается. Величины QTj, pyij и TYij выводятся на печать.
АЛГОРИТМ РАСЧЕТА УДЕЛЬНОЙ ТЕПЛОЕМКОСТИ ПРИРОДНОГО ГАЗА
Как известно, теплоемкость идеального газа зависит только от его температуры. Теплоемкость реального газа, кроме того, зависит и от давления cp = fi(p, T). Определение удельной теплоемкости реального газа заключается в расчете удельной теплоемкости газа в идеальном газовом состоянии при различных температурах с последующим введением поправки, на давление.
Поскольку расчет устьевой температуры связан с движением природного газа высокого давления, то методика определения удельной теплоемкости позволяет вычислить теплоемкость природного газа с учетом изменения его давления и температуры.
Удельная теплоемкость определяется из выражения
ср = ср(р,Т)/М,
где ср(р, Т) — молярная теплоемкость природного газа при текущих термодинамических условиях р и Т\
ср(р,Т)=с»р(Т)
—изобарная теплоемкость идеального газа (при р->0); р — обобщенная поправка изобарной теплоемкости на изменение давления (корректирующий член). Значения корректирующего члена задаются графиком (таблицей) в виде функции от приведенных параметров я и, т:
я = р/ркт>; т = Т/Гкр;
R R ' '
Ркр = yj Акр г Уг> * кр == 2Ll кР гУ*"'
М — молекулярная масса газа;
R
Мср = 2 Мгуг;
Ркр, 2\ф — критическое давление и температура природного газа соответственно, МПа и К; уг — молярная концентрация компонентов природного газа, %; г — число компонентов природного газа.
Изобарная теплоемкость газа в идеальных условиях ср (Г) определяется из выражения
Мс°р (T)=a
108
где а, Ъ, с, d — коэффициенты уравнения, которые определяются по формулам
r R
— 2j итУгу "газа — 2j тУтч
R R
*таза == ^j ^тУг* "газа ~ £j "тУг •
Порядок расчета следующий.
1. Ввод исходных данных.
2. По составу природного газа уг или по его относительной плотности р для текущих давлений р и температуры ^определяют приведенные параметры природного газа: я /
3. Определяются коэффициенты а, Ъ, с, d уравнения для вы
числения изобарной теплоемкости газа в
идеальных условиях.
4. Рассчитывают молярную
изобарную теплоемкость природ
ного
газа в идеальном газовом состоянии:
о (Т) __ (а + ЬТ + сТ2 + dTs)
М
5. Вычисляется обобщенная поправка изобарной теплоемко
сти (корректирующий член) Acp(pt T) как функция приведенных параметров газа я и т.
6. Вычисляется молярная теплоемкость газа при текущих
термодинамических параметрах р и
Т.
7. Определяется удельная теплоемкость природного газа
* м м
8. На этом расчет заканчивается. Величины молярной теплоемкости, cv(p, T) и удельной теплоемкости ср выводятся на печать.
АЛГОРИТМ РАСЧЕТА ПРОЦЕССА ДРОССЕЛИРОВАНИЯ ПРИРОДНОГО ГАЗА (КОЭФФИЦИЕНТА ДЖОУЛЯ — ТОМСОНА)
Расчет заключается в определении дифференциального дроссель-эффекта Di=fr(p, T), характеризующего понижение температуры природного газа при снижении давления.
Дифференциальный коэффициент Джоуля — Томсона D{ = ~h(p, T) представляет собой изменение температуры газа при бесконечно малом изменении давления. Поскольку в промысловой практике всегда имеет место некоторый конечный перепад давления, то дифференциальным коэффициентом обычно счита-
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.