Не спешите наказывать монтера. Стратегия текущего содержания пути в Великобритании. Гидравлический способ удаления покрытий, страница 105

Вполне очевидно, что начало выбросов определяют процессы нарастания вертикального выпучивания пути, а затем и процессы бифуркации, когда воедино соединяются процессы вертикального выпучивания и горизонтального смещения рельсо-шпальной решетки.

Рис. 3. Схема выпучивания рельсо-шпальной решетки:
l0 — длина полуволны неровности верхней поверхности балластного слоя; R0 — радиус кривизны неровности балластного слоя

Таким образом, наряду с определением значений критических температур нагрева рельсовых плетей бесстыкового пути при отсутствии на нем движущегося подвижного состава надлежит в обязательном порядке определять условия прохождения поездами совмещенных вертикальных и горизонтальных неровностей, т. е. значения температуры нагрева неровностей, вызывающих допустимые зазоры выпучивания рельсовых плетей и возникающие при этом рамные силы. Заметим, что высоту отрыва подошвы шпал от их постелей можно определять по следующей дополненной коэффициентом h формуле В. Шумежа (рис. 3): где Df(t) — наибольшее значение изменяющегося во времени t зазора между постелью шпал и их подошвами; f0 — начальная максимальная стрела вертикальной неровности рельсо-шпальной решетки; q — погонная нагрузка от рельсо-шпальной решетки; l0 —длина неровности; H(t) — действующая в рельсовых плетях в данный момент времени продольная сила; h — эмпирический коэффициент увеличения значений Df0 вследствие неровностей подошвы шпал, неравномерностей плотностей балластного слоя под этими постелями, отступлений в гранулометрическом составе и загрязненности балласта и т. п.; Нкр — критическое значение продольной силы:  где Е — модуль упругости материала рельса; Jy — момент инерции.

Сопоставление расчетных значений Df0(t) со значениями зазоров, которые приведены Е. М. Бромбергом по результатам опытов, показало необходимость обязательного введения коэффициентаh в эти расчеты.

Затем, также на основе специально проведенных опытов, должны быть определены зависимости изменения сил трения подошвы шпал по их постелям Fтр(Df) от размеров зазоровd. Все эти данные должны быть введены в алгоритмы определения допускаемой температуры нагрева рельсовых плетей, при которой устойчивость бесстыкового пути определяется исключением сил трения нескольких шпал по балласту. Такое математическое моделирование позволит установить нормативы содержания пути, предотвращающие появление зон опасного выпучивания рельсо-шпальной решетки. Должны быть также разработаны и способы диагностики бесстыкового пути для исключения опасного выпучивания.

Остановимся на некоторых выводах и практических моментах, предотвращающих возникновение явлений, связанных с опасным выпучиванием рельсо-шпальной решетки, сделанных польским исследователем бесстыкового пути Веславом Шумежом [8]:

1. Под влиянием сжимающих сил путевая решетка может потерять контакт с основанием на коротких отрезках неровности профиля, что приведет к уменьшению на 30 – 40 % средних значений поперечных сопротивлений сдвигу шпал в балласте и тем самым будет угрожать локальной устойчивости бесстыкового пути. Связь неровностей в профиле и устойчивости пути подтверждена в работе [8];

2. Собственный вес пути имеет решающее значение при определении условий безопасности. Увеличение собственной массы бесстыкового пути повышает безопасность его применения, кроме того, можно принять бóльшие допуски в содержании пути. При этом наиболее желательно и целесообразно использовать железобетонные шпалы;

3. Тщательная укладка и уплотнение балласта в пути, создающие дополнительное сопротивление при его вертикальном перемещении, увеличивают устойчивость пути. Между тем всякая подъемка пути на балласт, изменяя его контакт с основанием, является вредным фактором, особенно при неочищенном балласте;

4. Существенно увеличивает устойчивость пути на коротких неровностях профиля жесткость путевой рамы, зависящая от конструкции, состояния и содержания скреплений на шпалах;