Не спешите наказывать монтера. Стратегия текущего содержания пути в Великобритании. Гидравлический способ удаления покрытий, страница 103

Еще в 30-е годы и несколько позже, когда применялись легкие типы рельсов, вертикальное выпучивание звеньевого пути под действием продольных сжимающих сил в рельсах изучали многие ученые-путейцы, решая вопрос о возможности использования так называемых длинных рельсов (профессора Н. Т. Митюшин, К. Н. Мищенко, доценты М. П. Никифоров, М. Т. Членов и др.). Однако вначале проблему выпучивания связывали с так называемой обратной волной изгиба балок, лежащих на сплошном упругом основании, при их нагружении вертикальными силами. Лишь К. Н. Мищенко в 1950 г. опубликовал расчеты устойчивости бесстыкового пути в вертикальной плоскости при действии продольных сжимающих температурных сил в рельсовых плетях бесстыкового пути. Однако и методы расчетов К. Н. Мищенко были неточны, поскольку основывались на гипотезе Винклера. Эти «неточности» выявил проф. В. Н. Данилов, используя предложенный им совершенно новый и оригинальный математический аппарат — теорию функций абсолютного переменного. Но главный шаг в этом направлении был сделан в 1961 – 1962 гг. канд. техн. наук Е. М. Бромбергом, который впервые в мире с помощью прибора, предложенного инж. В. В. Богословским, исследовал и зарегистрировал результаты вертикального выпучивания рельсовых плетей реальных конструкций бесстыкового пути в эксплуатационных и лабораторных условиях на Экспериментальном кольце ВНИИЖТа и в Институте пути [6]. На рис. 2 приведены траектории горизонтальных поперечных и вертикальных перемещений рельсовых плетей бесстыкового пути при нагреве их до критической температуры. Этот график заимствован из статьи Е. М. Бромберга [6], в которой он пишет, что процесс выброса весьма сложен, развивается на значительной длине пути и протекает не во всех опытах одинаково. Например, в одном опыте поднятие рельсо-шпальной решетки на высоту 12 – 15 мм наблюдалось даже на расстоянии 45 м от центра развивающегося выброса пути; в другом такое же выпучивание наблюдалось на расстоянии 43 м, в третьем поднятие рельсо-шпальной решетки на 11 – 13 мм происходило на расстоянии 35 м и т. д.

Рис. 2. Деформации рельсо-шпальной решетки в процессе выброса:
IV – X — номера поперечных сечений пути

Начальный угол наклона траекторий поперечных перемещений точек на оси рельсов в плоскости их поперечных сечений изменялся от 0 до 45°, а вертикальные и поперечные горизонтальные перемещения на продольных осях рельсов независимы и как бы разделены; такой вид движения точек называют бифуркационным, или бифуркацией.

Ускоренная киносъемка показала, что весь процесс выброса пути продолжается от 0,1 до 0,2 с; он завершается колебаниями рельсо-шпальной решетки и разрушением балластной призмы. Следовательно, выпучивание рельсовых плетей может распространяться на весьма большие отрезки бесстыкового пути даже в самой начальной стадии развития выброса, а некоторые точки рельсовых плетей у шпал могут подниматься над своей постелью на 15 – 20 мм, т. е. терять контакт с основанием. При этом силы сопротивления поперечным перемещениям у таких шпал становятся ничтожно малыми. А ведь такая или близкая к ней ситуация возможна и на шпалах, через которые «проходит» межтележечное пространство какого-либо вагона или группы вагонов в поезде.

По результатам опытов Е. М. Бромберга можно судить и о размерах влияния обезгруживания рельсо-шпальной решетки на ее поперечные сдвиги под движущимся по бесстыковому пути поездом. Вот как он описывает процессы поперечного сдвига шпал в этих опытах [7, 8]: «Многочисленными визуальными наблюдениями и по мессурам за поведением ряда шпал на прямых и в кривых участках пути установлено, что, несмотря на вибрацию пути и действие продольной силы, боковой сдвиг шпалы начинается при накатывании колесной пары на расстоянии от нее 0,5 – 1,0 м, т. е. когда она уже в какой-то мере была нагружена и вертикальной силой... После перекатывания, если температура увеличивалась, шпала не полностью возвращается в свое исходное положение».