Пример. Путем переноса начала координат упростить уравнение кривой второго порядка .
Решение. Члена с произведением координат в уравнении нет, оба коэффициента при квадратах переменных отличны от нуля. Следовательно, данная квадрика центральная и переносом начала можно уничтожить члены первой степени.
Переносим начало координат в неизвестную пока точку по формулам . Получаем: или, после привидения подобных членов, .
Чтобы уничтожить члены первой степени, полагаем
у откуда получаем .
Подсчитываем свободный член:
х . Итак,
1 при переносе начала координат в точку
1 получаем уравнение
или .
Это – гипербола (ЦН-2). Ее действительная ось имеет длину 2 и расположена по оси
, а мнимая имеет длину 1 и
Рис. 4.34 расположена по оси (рис. 4.34).
§ 4.11. Параболические квадрики и их классификация
Определение. Если в уравнении квадрики (4.10.1), которое получается из общего уравнения уничтожением члена с произведением координат, один из коэффициентов равен нулю, то квадрика называется параболической.
Приступая к изучению параболических квадрик, положим для определенности . Тогда уравнение параболической квадрики будет таким:
(4.11.1)
Вид квадрики существенно зависит от того, равен ли нулю коэффициент , так как при левая часть уравнения не содержит переменной . Поэтому параболические квадрики разделяются на две разновидности: при квадрика называется параболической невырожденной (ПН), а при - параболической вырожденной (ПВ).
Уравнение квадрики ПН можно привести к такому виду: , где . Видим, что есть квадратичная функция от . Следовательно. Как это известно из школьного курса, данная кривая есть парабола. Ее уравнение переносом начала приведем к каноническому виду. Уравнения переноса начала в неизвестную пока точку имеют вид .
Поэтому уравнение квадрики в новой системе координат будет или .
За счет выбора m и n можно избавиться от члена с первой степенью и от свободного члена. Для этого надо, чтобы m и n удовлетворяли системе уравнений .
Легко видеть, что эта система имеет единственное решение: из первого уравнения можно найти n, так как , а затем из второго – m.
Таким образом, в системе квадрика ПН имеет уравнение
(4.11.2)
Это – парабола с параметром , начало координат находится в вершине параболы.
Уравнение квадрики ПВ получим из (4.11.1), положив :
(4.11.3)
Обозначив корни трехчлена, стоящего в левой части уравнения, через α и β, мы можем левую часть разложить на множители: . Следовательно, уравнение квадрики распадается в совокупности двух уравнений: и . Здесь могут представиться три случая.
ПВ-1. Корни α и β – действительные различные. Квадрика представляет собой пару параллельных прямых.
ПВ-2. В случае α = β квадрика представляет собой пару совпавших прямых.
ПВ-3. Корни α и β мнимые, Квадрика называется парой мнимых параллельных прямых. Она не содержит ни одной действительной точки.
Отметим, что в отличие от центральных квадрик, имеющих единственный центр симметрии, параболические либо не имеют центра симметрии (ПН), либо у нее бесконечное множество (ПВ). Поэтому параболические квадрики иногда называют нецентральными.
§ 4.12. Классификация квадрик (сводка результатов). Примеры.
В § 4.9 – 4.11 мы нашли все виды кривых, которые задаются общим уравнением второй степени (4.9.1). Результаты сведем в таблицу. При этом будем пользоваться обозначениями предыдущих параграфов: Ц – центральная квадрика, П – параболическая, Н- невырожденная квадрика. В – вырожденная.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.