Если силовое поле, в котором движется описываемая частица, стационарно, то потенциал его не зависит явно от времени, а функция имеет смысл потенциальной энергии и зависит только от координат . В этом случае волновую функцию можно представить как произведение двух. Одна функция зависит только от , другая – только от времени :
Подставим последнее выражение в уравнение Шрёдингера
.
После сокращения на временной множитель и некоторых элементарных преобразований получим: (*).
Это уравнение Шрёдингера для стационарных состояний. В него входит только координатная часть волновой ф-ции –. Если последняя будет найдена, то полная волновая ф-ция находится домножением координатной части на временной множитель .
Поскольку вероятность определяется квадратом волновой ф-ции, а квадрат комплексной величины находится умножением на комплексно сопряженную, то имеет место следующее соотношение для стационарных волновых функций:
.
Таким образом, чтобы найти волновую ф-цию для стационарных состояний, необходимо решить уравнение (*) и знать полную энергию .
Свободное движение частиц.
Во время свободного движения квантовой частицы никакие силы на нее не действуют и можно ее потенциальную энергию равной нулю. Пусть движение частицы происходит в направлении , тогда (*) принимает вид: .
Частным решением этого уравнения является ф-ции вида , где и – константы. Если подставить искомое решение в само уравнение, то мы получим связь энергии частицы и величины :
Полная волновая функция с учетом зависимости от времени для свободной частицы имеет вид . Это плоская монохроматическая волна с частотой и волновым числом . Так как , а , то .
Мы получили обычное выражение, связывающее кинетическую энергию и импульс нерелятивистской частицы. Величины и такой частицы ничем не ограничены, те свободная квантовая частица может иметь любое значение энергии и импульса. Вероятность обнаружения частицы в интервале координат определяется соотношением .
Величину, стоящую перед , будем называть плотностью вероятности .
Это означает равную вероятность обнаружения свободной частицы в любой точке направления , т.е. область движения вдоль «» у свободной частицы ничем не ограничена. Энергия частицы может быть любой, начиная с нуля, так как из уравнения Шрёдингера нет никаких ограничений на величину .
Так говорит классическая механика
Рассмотрим случай .
Решение ур. Шрёдингера покажет, что происходит с реальными частицами. С учетом того, что в первой области , а во второй , ур. Шредингера для них будет выглядеть так:
Первая область:, Вторая область:
Решения этих уравнений имеет вид
.
Первое слагаемое в описывает падающую волну, второе – отраженную от потенциальной ступеньки. Так как есть решение уравнения и во второй области, то для квантовой частицы имеется конечная вероятность попадания во вторую область. Эта вероятность определяется величиной . Очевидно, что второе слагаемое , растущее с увеличением , должно равняться нулю. Поэтому. Остается первое слагаемое, квадрат которого и определяет конечную вероятность обнаружения частицы за потенциальной ступенькой. Эта вероятность экспоненциально падает с увеличением .
В точке должно выполняться условие непрерывности и , т.е. и .Отсюда получаются формулы, связывающие коэффициенты :
.
Таким образом ;
Окончательно волновые функции для первой и второй областей имеют вид:
Зайдя во вторую область частица ОБЯЗАТЕЛЬНО вернется.
Перейдем к рассмотрению случая, когда энергия частицы больше высоты ступеньки ().
Ур. Шрёдингера для первой и второй областей выглядит также. С учетом того, что , решения для этих областей теперь имеют вид
, где , .
Оба решения представляют собой суммы падающей и отраженной волн. Так как во второй области нет отраженной волны, то . Для нахождения связи коэффициентов воспользуемся снова условиями непрерывности функции и ее первой производной в точке . Первое условие дает , из второго условия следует , из этих уравнений находим
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.