.
Этот заряд равен , где - объемная плотность связанных зарядов. Интеграл бёрется по объему , ограниченному поверхностью . Тогда
.
Применим к этому выражению теорему Стокса, получаем: , или
(1.2.9)
- объемная плотность связанных зарядов равна дивергенции вектора , взятой с обратным знаком.
Точки с (рис. 1.2.5) служат источниками поля вектора , из этих точек линии вектора расходятся. Точки с (рис.1.2.6) служат стоками поля вектора , к этим точкам линии сходятся. При поляризации диэлектрика положительные связанные заряды смещаются в направлении вектора , а отрицательные связанные заряды - в противоположном. В результате в местах с положительной дивергенцией образуется избыток отрицательных связанных зарядов, а в местах с отрицательной - избыток положительных связанных зарядов.
Связанные заряды отличаются от сторонних лишь тем, что не могут покинуть пределы молекул, в состав которых они входят. В остальном их свойства не отличаются от свойств других зарядов. Поэтому, если плотность связанных зарядов отлична от нуля, теорему Гаусса для вектора следует писать в виде:
, (1.2.10)
тогда уравнение Пуассона принимает вид
,
где - плотность сторонних (свободных) зарядов.
Из (1.2.9) имеем
или , и
. (1.2.11)
Из выражения (1.2.11) следует, что объемная плотность связанных зарядов может быть отлична от нуля в двух случаях: - если диэлектрик неоднороден, ; и, - если в данном месте диэлектрика плотность сторонних зарядов отлична от нуля, .
Если внутри диэлектрика сторонних (свободных) зарядов нет, имеем:
.
ЛЕКЦИЯ 5
1.2.5. ВЕКТОР ЭЛЕКТРИЧЕСКОГО СМЕЩЕНИЯ
Источниками электрического поля служат не только сторонние, но и связанные заряды, т.е. , или . Раскрыв скобки и сгруппировав, получаем:
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.