3.Рассмотрим электрическое поле, созданное двумя разноименно заряженными плоскостями с поверхностными плотностями заряда и . Очевидно, напряженности полей плоскостей направлены в одну сторону (от положительной плоскости к отрицательной, рис.1.1.12), и результирующая напряженность , где - напряженность поля одной заряженной плоскости. Окончательно получаем
4.Вычислим напряженность электрического поля, создаваемого заряженной сферой радиуса R. Заряд сферы q, его поверхностная плотность Для определения напряженности построим гауссову поверхность в виде сферы радиуса r, центр которой совпадает с центром заряженной сферы (рис.1.1.13).
При r≤R внутри гауссовой поверхности зарядов нет, так как весь заряд распределен по поверхности сферы. По теореме Гаусса или , следовательно, - напряженность электрического поля внутри заряженной сферы равна нулю.
При внутрь гауссовой поверхности попадает весь заряд q сферы. В силу центральной симметрии поля напряженность на расстоянии r от центра сферы всюду одинакова, и или при этом , тогда , и С ростом r значения Е убывают пропорционально (рис.1.1.14). На поверхности сферы напряженность испытывает скачек
5.Рассмотрим электрическое поле, созданное объемно заряженным шаром радиуса R . Объемная плотность заряда шара ρ. Гауссову поверхность построим в виде сферы, центр которой совпадает с центром шара, а радиус равен r (рис.1.1.15).
При внутрь гауссовой поверхности попадает заряд , тогда по теореме Гаусса , и . На поверхности шара при r=R напряженность .
При внутрь гауссовой поверхности попадает весь заряд , и , отсюда На поверхности сферы т.е. и скачка напряженности не происходит. Зависимость представлена на рис1.1.16.
Лекция 4
1.1.9.ПОТЕНЦИАЛЬНЫЙ ХАРАКТЕР ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ.РАБОТА СИЛ ПОЛЯ ПРИ ПЕРЕМЕЩЕНИИ ЗАРЯДОВ. ЦИРКУЛЯЦИЯ И РОТОР ВЕКТОРА НАПРЯЖЕННОСТИ
Работа, совершаемая силами электростатического поля при перемещении заряда на отрезок равна:
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.