Сила тяжести гребного винта приложена к консольной кормовой части гребного вала. В расчетах учитывают уменьшение веса винта за счет выталкивающей силы воды:
.
(5.9)
Здесь – сила тяжести гребного винта на
воздухе;
– плотность морской воды,
= 1025 кг/м3;
– плотность материала винта: для стали
= 7850 кг/м3 , для бронзы
= 8500 кг/м3 .
При отсутствии паспортных данных массу стального гребного винта (кг) можно ориентировочно оценить по эмпирической формуле
(5.10)
где – диаметр гребного винта, м.
Масса гребных винтов ледоколов примерно в два раза больше значения, подсчитанного по (5.10). Масса винтов из бронзы также больше расчетной величины на 10%.
Нагрузки от масс элементов валопровода являются постоянными. Однако при вращении они создают переменные напряжения, изменяющиеся по симметричному циклу. Период цикла равен времени одного оборота гребного винта.
Упор относится к силам гидродинамической природы и является следствием работы гребного винта в потоке воды. Из-за влияния корпуса судна скорость потока оказывается переменной, соответственно меняется во времени упор. На его нестационарность оказывают влияние как эксплуатационные (загрузка судна, частота вращения гребного винта, волнение моря), так и геометрические факторы (число лопастей, место расположения валопровода, кормовые обводы корпуса). Несмотря на многообразие корреляционных факторов, частота доминанты переменного упора совпадает с так называемой лопастной частотой, которая определяется произведением числа лопастей на частоту вращения винта.
Средняя интегральная величина упора вычисляется по формуле [14]
(5.11)
где и
– КПД гребного
винта и передачи;
– коэффициент засасывания;
– скорость судна, уз.
При среднестатистических значениях =
0,66;
= 0,98 и
= 0,18 вместо (5.11) можно записать
.
Амплитудное значение упора гребного винта также может быть
подсчитано по интегрально-дифференциальным зависимостям лопастной теории. Это –
весьма трудоемкий путь, поэтому в инженерной практике чаще используют простые
соотношения, которые удовлетворительно согласуются с экспериментом. Например,
на рис. 5.15 приведено изменение отношения /
(
–
амплитуда упора) в зависимости от числа лопастей гребного винта. Обращают на
себя внимание следующие факты: гребные винты с четным числом лопастей создают
большие колебания упора по сравнению с винтами, имеющими нечетное количество
лопастей; увеличение числа лопастей сопровождается уменьшением пульсаций упора.
Рис. 5.15. Относительные амплитуды упора гребного винта
Периодический характер изменения упора способствует появлению осевых колебаний судовых валопроводов.
При работе гребного винта в неравномерном потоке распределенные силы, действующие на каждую лопасть, могут быть сведены к главному вектору и главному моменту. Вследствие этого помимо упора на гребном винте возникают переменные моменты. В установках с ДВС амплитуда крутящего момента от двигателя в несколько раз превышает амплитуду гидродинамического крутящего момента. На этом основании переменный характер крутящего момента от гребного винта, как правило, не учитывают.
Изгибающий гидродинамический момент изменяется с лопастной частотой и является возбудителем изгибных колебаний. Плоскость действия этого момента расположена под углом (15¸45)° к вертикали. Следовательно, можно говорить о горизонтальной и вертикальной составляющих изгибающего момента.
Средние и амплитудные значения составляющих изменяются примерно
пропорционально квадрату частоты вращения гребного винта, т.е. представляют
собой линейную зависимость от крутящего момента. По этой причине на стадии
эскизного проектирования пользуются такой зависимостью и гидродинамические
моменты определяют в функции (табл. 5.3).
Таблица 5.3
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.