Разработка катализаторов на основе оксида алюминия для процессов получения олефинов из спиртов, страница 64

62.  Ehwald H., Fiebig W., Jerschkewitz H-G., Lischke G., Barlitz B., Reich P., Ohlmann G. Synthesis of olefins from methanol on alumina-supported  H4[SiW12O40]  catalysts // Applied  Catalysis. – 1987. – V. 34. – P. 23-28.

63.  Duttaa P., Roya S.C., Nandi L.N., Samuel P., Muthukumaru M. Bhat P.B.D.,  Ravindranathanb M.  Synthesis of lower olefins from methanol and subsequent conversion of ethylene to higher olefins via oligomerisation // Journal of Molecular Catalysis A: Chemical. – 2004. – V. 223. – P. 231-235.

64.  Ni X., Tan Y., Han Y. Study of Methanol Conversion over Fe-Zn-Zr Catalyst // Journal of Natural Gas Chemistry. – 2007. – V. 16. – P. 326-328.

65.   Vora B.V., Marker T.L., Barger P.T., Nilsen H.R., Kvisle S. and Fuglerud T. Economic route for natural gas conversion to ethylene and propylene // Studies in Surface Science and Catalysis. – 1997. – V. 107. – P. 87-98.

66.  Barger P.T., Vora B.V. Methanol to olefin process with increased selectivity to ethylene and propylene United States Patent №6534692, 2003.

67.  Bozzano A.G., Bradley S.A., Catillo R.L., Chen J.Q. Methanol-to-olefins process with reduced coking United States Patent №2007203383, 2007.

68.  Turek W., Haber J., Krowiak A. Dehydration of isopropyl alcohol used as an indicator of the type and strength of catalyst acid centers // Applied Surface Science. – 2005. – V. 252. – N. 3. – P. 823-827.

69.  Pines H., Brown S.M. Alumina: Catalyst and support. XL (1) ring expansion during the dehydration of alcohols over alumina catalysts (2) // Journal of Catalysis. – 1971. – V. 20. – N. 1. – P. 74-78.

70.  Knözinger H., Scheglila A. The dehydration of alcohols on alumina: XII. Kinetic isotope effects in the olefin formation from butanols // Journal of Catalysis. – 1970. – V. 17. – N. 2. – P. 252-263.

71.  Knözinger H., Bühl H., Ress E. The dehydration of alcohols over alumina: VII. The dependence of reaction direction on the substrate structure // Journal of Catalysis. – 1968. – V. 12. – N. 2. – P. 121-128.

72.  Knözinger H., Bühl H., Kochloefl H. The dehydration of alcohols on alumina: XIV. Reactivity and mechanism // Journal of Catalysis. – 1972. – V. 24. – N. 1. – P. 57-68.

73.  Srinivasan S., Narayanan C.R., Datye A.K. The role of sodium and structure on the catalytic behavior of alumina: II. IR spectroscopy // Applied Catalysis A: General. – 1995. – V. 132. – N. 2. – P. 289-308.

74.  Narayanan C.R., Srinivasan S., Datye A.K., Gorte R., Biaglow A. The effect of alumina structure on surface sites for alcohol dehydration // Journal  of  Catalysis. – 1992. – V. 138. – P. 659-674.

75.  Golay S., Doepper R., Renken A. Reactor performance enhancement under periodic operation for the ethanol dehydration over g-alumina, a reaction with a stop-effect // Chemical Engineering Science. – 1999. – V. 54. – P. 4469-4474.

76.  Banerjee A.K., Sarma A.R.K., Mukherjee P.K., Nath D., Singh N., Mahapatra H., Majumdar D.S. Selective dehydration of ethyl alcohol to ethylene by vapour phase catalytic process // Studies in Surface Science and Catalysis. – 1998. – V. 113. – P. 241-245.

77.  Luy J.C., Parera J.M. Acidity control in alcohol dehydration // Applied Catalysis. – 1986. – V. 26. – P. 295-304.

78.  Berteau P., Ceckiewicz S., Delmon B. Role of the acid-base properties of aluminas, modified γ-alumina, and silica-alumina in 1-butanol dehydration // Applied Catalysis. – 1987. – V. 31. – N. 2. – P. 361-383.

79.  Golay S., Doepper R., Renken A. In-situ characterisation of the surface intermediates for the ethanol dehydration reaction over g-alumina under dynamic conditions // Applied Catalysis A: General. – 1998. – V. 172. – P. 97-106.

80.  Siddhan S., Narayanan K. Dehydration of alcohols over alumina: Effect of sodium impregnation on the mode of elimination // Journal of Catalysis. – 1981. – V. 68. – N. 2. – P. 383-387.