Разработка катализаторов на основе оксида алюминия для процессов получения олефинов из спиртов, страница 61

3.  Inamura S., Miyamoto H., Imaida Y., Takagawa M., Hirota K., Yamaguchi O. Formation and hot isostatic pressing of Zr02 solid solution in the system ZrO2-AI203 // J. of Mater. Science. – 1994. – V. 281. – P. 4913-4917.

4.  Anthony R.G., Singh B.B. Kinetic analysis of complex reaction systems-methanol conversion to low molecular weight olefins // Chem. Eng. Commun. – 1980. – V. 6. – N. 4. – P. 215-224.

5.  . Singh B.B, Lin F.N., Anthony R.G. Catalytic conversion of methanol to low-molecular weight olefins // Chem. Eng. Commun. – 1980. – V. 4. – N. 6. – P. 749-745.

6.  Chang C.D. Hydrocarbons from methanol // Rev. Sci. Eng. – 1983. – V. 25. – N. 1 – P. 1-118.

7.  Rollmann L. D. Selective production of aromaticsUnited States Patent №4300011, 1981.

8.  Rollmann L. D. Selective production of aromaticsUnited States Patent №4359595, 1982.

9.  Olson D. H. Light hydrocarbon separation using 8-member ring zeolitesUnited States Patent 6488741, 2002.

10.  Aguayo A.T., Gayubo A.G., Vivanco R., Olazar M., Bilbao J. Role of acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins // Applied Catalysis A: General. – 2005. – V. 283. – P. 197–207.

11.  Wilson S., Barger P. The characteristics of SAPO-34 which influence the conversion of methanol to light olefins // Microporous and Mesoporous Materials. – 1999. – V. 29. – N. 1–2. – P. 117–126.

12.  Chen J., Wright P.A., Natarajan S., Thomas J.M. Understanding The Bronsted Acidity of Sapo-5, Sapo-17, Sapo-18 and SAPO-34 and Their Catalytic Performance for Methanol Conversion to Hydrocarbons // Studies in Surface Science and Catalysis. – 1994. – V. 84. – P. 1731–1738.

13.  Travalloni L., Gomes A.C.L., Gaspar A.C., da Silva M.A.P. Methanol conversion over acid solid catalysts // Catalysis Today. – 2008. – V. 133–135. – P. 406-412.

14.  Wu X., Abraha M.G., Rayford G.A. Methanol conversion on SAPO-34: reaction condition for fixed-bed reactor // Applied Catalysis A: General. – 2004. – V. 260. – P. 63-69.

15.  Wragg D.S., Johnsen R.E., Balasundarama M., Norby P., Fjellvag H., Gronvold A.,  Fuglerud T., Hafizovic J., Vistad O.B., Akporiaye D. SAPO-34 methanol-to-olefin catalysts under working conditions: A combined in situ powder X-ray diffraction, mass spectrometry and Raman study // Journal of Catalysis. – 2009. – № 268. – P. 290-296.

16.  Lee Y-J., Baek S-C., Jun K-W. Methanol conversion on SAPO-34 catalysts prepared by mixed template method // Applied Catalysis A: General. – 2007. – V. 329. – P. 130-136.

17.  Popova M.,  Minchev Ch., Kanazirev V. Methanol conversion to light alkenes over SAPO–34 molecular sieves synthesized using various sources of silicon and aluminium // Applied Catalysis A: General. – 1998. – V. 169. – N. 2. – P. 227-235.  

18.  Liang J., Li H., Zhao S., Guo W., Wang R., Ying M. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion // Applied Catalysis. – 1990. – V. 64. – P. 31-40.

19.  Hereijgers B.P.C., Bleken F., Nilsen M.H., Svelle S., Lillerud K-L., Bjørgen M., Weckhuysen B.M. Unni Olsbye Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts // Journal of Catalysis. – 2009. – V. 264. – N. 1. – P. 77-87.

20.  Campelo J.M., Lafont F., Marinas J.M., Ojeda M. Studies of catalyst deactivation in methanol conversion with high, medium and small pore silicoaluminophosphates SO // Appl. Catal. A: General. – 2000. – V. 192. – N. 1. – P. 85-96.

21.  Wang W., Buchholz A., Seiler M., Hunger M. Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts. // J. Am. Chem. Soc. – 2003. – V. 125. – N. 49. – P. 15260-15267.

22.   Wang W., Jiang Y.J., Hunger M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy // Catal. Today. – 2006. – V. 113. – N. 1–2. – P. 102-114.