2. Закон Био-Савара-Лапласа. Экспериментальные исследования магнитных полей проводников с током разных по форме привели к неоднозначным результатам. Например, для прямого длинного проводника индукция убывала обратно пропорционально расстоянию от проводника. Лаплас теоретически установил закон для индукции магнитного поля, создаваемого малым элементом проводника dl с силой тока J. В скалярном виде в системе СИ он имеет вид
. 7.2
Здесь μ0 = 4π ∙10-7 Гн/м – магнитная постоянная, которая служит для установления соотношения между электрическими и механическими единицами в формуле, μ – относительная магнитная проницаемость, которая учитывает вклад в магнитное поле молекул среды. Для всех материалов кроме ферромагнетиков она незначительно отличается от единицы. Угол α между радиус-вектором r, проведенным из элемента проводника в точку наблюдения и вектором длины элемента.
Направление вектора индукции определяется правилом буравчика: если вворачивать буравчик в направлении тока, то вектор индукции направлен по вектору скорости конца ручки буравчика в точке наблюдения.
3. Применение закона Био-Савара- Лапласа и принципа суперпозиции для расчета магнитных полей проводников подтвердило результаты экспериментов. Например, выведем формулу индукции магнитного поля отрезка прямого проводника с током в точке на расстоянии а. от проводника (рис. 7.2). Выделим элемент длиной dl на проводнике. Вектор индукции магнитного поля элемента, а также всех других элементов, согласно правилу буравчика, направлен за чертеж. По принципу суперпозиции . Подставим под знак интеграла формулу закона Био-Савара-Лапласа . Под знаком интеграла три переменных. Перейдем к одной переменной – углу α по соотношениям для сторон треугольника: , , откуда после дифференцирования . Подставим полученные соотношения между переменными и после сокращения проинтегрируем. Получим формулу индукции магнитного поля отрезка прямого проводника
7.3
Если проводник бесконечно длинный (a << l, α1→0, α→π ), то формула для индукции принимает вид
. 7.4
Как и в опытах Био и Савара индукция магнитного поля убывает обратно пропорционально расстоянию от проводника, а силовые линии поля являются концентрическими окружностями.
4. Силовые векторные поля характеризуют циркуляцией вектора по некоторому контуру и потоком вектора через поверхность контура. Поток по определению равен интегралу от скалярного произведения вектора индукции по площади контура: . Поток пропорционален числу силовых линий, пронизывающих контур.
Определим циркуляцию вектора индукции для уже известного магнитного поля длинного проводника с током по некоторому контуру, охватывающем проводник. (рис.7.3). Произведение – это проекция вектора элемента длины на вектор индукции, которая равна длине дуги . Подставив формулу индукции поля длинного проводника с током, получим . Циркуляция вектора индукции не зависит от формы контура интегрирования, ни от его размеров, ни от положения проводника внутри контура. Обобщим на произвольное число проводников с током:
. 7.5
Это закон полного тока: циркуляция вектора индукции магнитного поля по произвольному контуру равна произведению абсолютной магнитной проницаемости среды на алгебраическую сумму токов, пронизывающих поверхность, ограниченную контуром интегрирования.
5. Закон полного тока позволяет в задачах с известным распределением магнитного поля сравнительно легко определить индукцию. Рассмотрим пример, поле тороида – катушки, намотанной равномерно на тор. Пусть тор имеет разрез, воздушный зазор (рис. 7.4). Силовые линии магнитного поля это окружности. Индукция магнитного поля вдоль окружности одинакова как в сердечнике, так и в воздушном зазоре. Это связано с тем, что силовые магнитного поля замкнуты, а при малой длине зазора их густота и индукция почти неизменна. Если длины сердечника и зазора равны lиl0 , магнитные проницаемости μμ0 и μ0 то сумма токов, пронизывающих поверхность внутри окружности равна произведению числа витков на силу тока. Интеграл по замкнутому контуру представим суммой двух интегралов по контуру в сердечнике и зазоре. Таким образом, по закону полного тока . Индукция магнитного поля в сердечнике тороида одинакова по силовой линии и равна
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.