4.5.1. Решение уравнения Капчинского — Владимирского
В разд. 4.4 было показано, что является функцией N, nb и rо для данныx типа ионов и энергии пучка. Не существует простого выражения для подстановка которого в уравнения (123) и (128) дала бы возможность получить общее аналитическое решение. Однако легко получить численные решения, которые показывают, что огибающая пучка положительных ионов близка к гиперболе. Тем не менее полезно попытаться найти аналитическое решение, чтобы получить представление о масштабе расплывания пучка при измерении основных параметров пучка. С помощью уравнений (123) и (128) можно получить соотношение
(129)
где . Если ток пучка сохраняется, то
(130)
Пространственный потенциал нейтрализованного пучка положительных ионов может быть получен из уравнения (76) и равен
(131)
Объединение уравнений (129)—(131) дает соотношение
(132)
где . В нерелятивистском пределе член становится малым и решение уравнения (132) приближается к гиперболе с уравнением огибающей вида
(133)
где А — радиус огибающей в самой узкой части пучка и равно нулю.
Параметры самой узкой части пучка могут быть выражены через начальный радиус огибающей, угол сходимости пучка и его производную .
(134)
(135)
Здесь — аксиальная координата сужения, отсчитанная от начального положения. Радиус пучка на мишени выражается формулой
где — расстояние до мишени и Следовательно,
(136)
Величина минимальна при , так что
(137)
Возвращаясь к уравнению (132), мы можем выразить в форме
(138)
Где —начальная плотность тока пучка. Следовательно,
Холмс [22] исследовал этот эффект для фиксированных значений L и j+, увеличивая R так, что эффективный угол расходимости пучка , который определяется как , уменьшался до очень малого значения, тогда как суммарный ток пучка нарастал как R2. Его результаты представлены на рис. 4.23. При высоких энергиях пучка член, содержащий объемный заряд, в конечном счете доминирует.
Рис. 4.23. Уменьшение угла расходимости, достигаемое путем увеличения радиуса пучка (при использовании больших извлекающих отверстий) при постоянной плотности первеанса пучка для Не+-пучка в Не [22].
В случае пучков отрицательных ионов, аналитический вид огибающей пучка получить трудно, так как влияния объемного заряда и эмиттанса взаимно противоположны. При высоких давлениях газа потенциал объемного заряда перестает зависеть от давления и тока пучка. Следовательно, можно ожидать, что огибающая приобретает форму осциллирующей кривой, так как член, связанный с эмиттансом, обратно пропорционален кубу радиуса пучка, тогда как член, связанный с объемным зарядом, обратно пропорционален только радиусу пучка, Величина этих осцилляции существенно зависит от начальных условий.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.