Учебное пособие по решению контрольных задач, страница 15

1. Через точку О проводим горизонталь плоскости a и определяем положение горизонтальной проекции точки О (О¢) (рис.14.2) – см. задачу 4.

2. Совместим плоскость a с горизонтальной плоскостью проекций путем ее вращения вокруг следа . След , как ось вращения, своего положения не меняет; точка схода следов Xa также не изменяет своего положения. Поэтому для построения нового положения фронтального следа  плоскости a, совмещенного с плоскостью p1, достаточно найти одну точку этого следа в совмещенном положении.

Совместим с плоскостью p1 точку N1 (N1 Î ). Проведем плоскость вращения g1 точки N1

 Î  ^ .

Новая проекция  находится на пересечении дуги окружности радиуса Xa со следом плоскости вращения .

 


3. Через  и Xa проведем совмещенное с горизонтальной плоскостью проекций  положение фронтального следа плоскости .

4. Совместим с плоскостью p1 горизонталь N1O, которая в совмещенном положении будет проходить через  параллельно горизонтальному следу .

 


5. Найдем совмещенное с плоскостью p1 положение точки О. Проведем плоскость вращения точки О:

О¢ Î  ^ .

Проекция совмещенного положения точки О (¢) находится в пересечении нового положения горизонтали, проведенной из , со следом плоскости вращения .

6. Строим окружность радиусом R с центром в точке¢ и вписываем в нее заданную фигуру (рис.14.3). Поскольку в условии задачи не оговаривается ориентация многоугольника, положение его вершин выбираем произвольно. Это положение целесообразно выбрать таким, чтобы хотя бы две вершины многоугольника находились на одной горизонтали, так как при этом упрощаются дальнейшие построения.

7. Поворачиваем плоскость a вместе с DАВС в исходное положение. Обратным ходом строим проекции вершин заданной фигуры. Рассмотрим построения на примере вершины В (рис.14.4).

Через`В¢ проводим совмещенное с плоскостью p1 положение горизонтали:

¢ || .

На фронтальном следе  находим положение  и на оси х. Строим фронтальную проекцию горизонтали (из  || x) и горизонтальную проекцию горизонтали (из  || ).

Точка В вращается в той же плоскости, что и точка О, и ее след  уже имеется на чертеже. Находим положение В¢ в пересечении горизонтальной проекции горизонтали и следа плоскости вращения . По горизонтальной проекции В¢ строим ее фронтальную проекцию В².

8. Аналогично строим проекции вершин А и С (рис.14.5) и соединяем одноименные проекции вершин. Треугольник А¢В¢С¢ – горизонтальная проекция DАВС, DА²В²С² – его фронтальная проекция.

 


14.2. Плоскость частного положения (рис.14.6)

1. Строим горизонтальную проекцию центра О. Поскольку плоскость a – горизонтально-проецирующая, то О¢ Î  (рис.14.7).

2. Совмещаем плоскость a вращением вокруг следа  с плоскостью проекций p2. Новое положение горизонтального следа  совпадет с осью x.

3. Через точку О проведем прямую, перпендикулярную плоскости p1, и совместим эту прямую с плоскостью p2. Горизонтальный след этой прямой переместится из  в точку , а ее проекция в новом совмещенном с плоскостью p2 положении окажется параллельной . Проведем плоскость вращения точки О:

 


О² Î  ^ .

В пересечении нового положения горизонтально-проецирующей прямой и плоскости вращения , найдем совмещенное положение точки О (²).

4. Строим окружность радиуса R с центром в точке² и вписываем в нее заданную фигуру (рис.14.8).

5. Поворачиваем плоскость a вместе с четырехугольником ABCD в исходное положение. Обратным ходом строим проекции заданной фигуры на горизонтальной (они попадают на след ) и фронтальной плоскости проекций. Вершины одноименных проекций соединяем.

Задача 15