При разрыве цепи обратной связи в кодере ДИКМ (см. рис. 14.2) вместо разностного сигнала y(t)передается исходный сигнал U(t), соответственно получим yпик.б = Uпик.б = = KпUд.б. Тогда (14.9) трансформируется в (12.16) и характеризует ОСШ квантования в системе ИКМ. Если полагать, что для ИКМ и ДИКМ применяются одинаковые значения Fди L, то «выигрыш» системы ДИКМ относительно ИКМ по шумам квантования в децибелах можно оценить величиной
. (14.10)
Для максимизации выигрыша ∆γ необходимо, как следует из (14.7), (14.10), минимизировать величину σу.б. Используя (14.6), получим
. (14.11)
Учтем в (14.11), что, по определению (см. параграф 1.3),
(14.12)
где R(рТд) = R(–pTд) -- нормированный коэффициент корреляции сигнала Uб(t) в момент времени τ = рТд, р = 0, 1, 2,..., k, при этом всегда |R(pTд)| < 1,0.
Тогда (14.11) приводится к виду
. (14.13)
Минимум σу.б обеспечивается при определенных (оптимальных) значениях коэффициентов предсказания Сj.opt которые находятся путем решения системы уравнений вида.
В качестве примера положим, что используется предсказание первого порядка: Uпр(t) = C1U(t – Тд). Тогда из (14.13) для k= 1 получим
, (14.14)
откуда
C1.opt = R(Tд); σ2y.б.min = U2д.б(1 – R2(Tд)). (14.15)
Подставляя (14.14) в (14.10), оценим выигрыш ДИКМ при таком предсказании в децибелах:
. (14.16)
При C1 = 1 и С1 = С1.орt, получаем соответственно
∆γ = –3 – 10 lg(1–R(Tд)); ∆γmax = 10 lg(1–R2(Tд)). (14.17)
Как следует из (14.16), (14.17), ДИКМ может обеспечить улучшение качественных показателей по сравнению с ИКМ, если на интервале Тд сохраняется высокая корреляция между двумя соседними отсчетами: R(TД) → 1. При слабой корреляции (в частности, при С1 = 1 и R(Tд) < 0,5) ∆γ < 0 и ДИКМ хуже ИКМ. Корреляция отсутствует, когда соседние отсчеты соответствуют разным каналам; следовательно, ДИКМ нецелесообразно применять по отношению к групповому АИМ-сигналу, полученному путем временного уплотнения. Если же использовать ДИКМ для кодирования индивидуальных сигналов, а затем применить временное уплотнение полученных кодовых комбинаций, то при таком построении ЦСП в каждом индивидуальном кодере ДИКМ обеспечивается высокая корреляция между отсчетами, а следовательно, и более высокое отношение сигнал—шум квантования. Этот выигрыш можно «обменять» на уменьшение числа уровней квантования Lи соответственно уменьшение тактовой частоты группового цифрового сигнала, что зачастую является решающим. Поскольку использование индивидуальных кодеров-декодеров ДИКМ приводит к усложнению оконечного оборудования, то ДИКМ применяется обычно в малоканальных системах или для передачи сравнительно малочисленных широкополосных сигналов типа звукового вещания, телевидения и видеотелефона.
Проиллюстрируем это положение некоторыми примерами. Так, при передаче типичного телефонного сигнала и частоте дискретизации Fд = 8 кГц (Tд = 125 мкс) имеем R(Tд) ≈ 0,8 [см. формулу (1.30)]. Тогда из (14.17) при C1 = 1 получим ∆γ = 4 дБ. Из материалов параграфа 12.3 известно, что изменение длины двоичной кодовой комбинации на один разряд вызывает изменение отношения сигнал—шум квантования на 6 дБ. Следовательно, если выигрыш, полученный от использования ДИКМ вместо ИКМ, «обменять» на уменьшение длины кодовой комбинации на один разряд, в результате получим проигрыш в величине ОСШ квантования на 2 дБ, что, как правило, недопустимо.
При передаче сигналов звукового вещания, когда частота дискретизации выбирается порядка 32 кГц, коэффициент корреляции R(Tд = (32∙103)–1c) ≈ 0,98 и на основании (14.17) выигрыш ДИКМ составляет порядка 14 дБ. Такой выигрыш можно «обменять» на уменьшение кодовой комбинации (на два разряда) и соответственно понижение тактовой частоты цифрового сигнала звукового вещания.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.