Частотно-избирательные системы. Длинные линии (8-9 главы учебника "Радиотехнические цепи и сигналы" под ред. К.Е.Румянцева), страница 10

На рис. 9.7 показаны эквивалентные схемы замещения беско­нечной идеальной длинной линии и графики распределения на­пряжения и тока вдоль нее в моменты t = tи t = 2t. В этих схемах . Схемы на рис. 9.7, а, в упростят рассмотрение электромагнитных процессов в бесконечно длин­ной волне. На эквивалентной схеме на рис. 9.7, а отображено только первое элементарное звено, нагруженное на активное волновое сопротивление линии W, имитирующее оставшуюся бесконечную часть схемы замещения.

Пусть в момент t = 0 замыканием ключа S(см. рис. 9.7, а) к линии подключается источник постоянного напряжения E0. В этом случае через индуктивность L1 потечет ток i0 = E0/W. Так как сопротивление W активно, то ток i0 совпадает по фазе с напряже­нием E0. Этот ток в точке разветвления схемы разбивается на две составляющие, первая из которых icзаряжает емкость С1 а вто­рая iw протекает через активное эквивалентное нагрузочное со­противление W,причем i0 = iс + iw.

В начальный момент при t = 0 ток iс практически равен току i0, а ток iw близок к нулю. По мере заряда емкости конденсатора С1 ток iс уменьшается, а напряжение на конденсаторе возрастает; ток iw в это же время также растет.

 


Рис. 9.7. Эквивалентные схемы замещения бесконечной идеальной длин­ной линии (а, в) и графики распределения напряжения и тока (б, г)

Через некоторое время tпосле подключения источника напряжения к линии заряд емкости кон­денсатора первого звена практически завершается, напряжение на нем достигает значения близкого к E0, ток iс падает почти до нуля. При этом ток iw становится приблизительно равным i0. Та­ким образом, к концу интервала времени tна начальном участке линии длиной х, соответствующем первому низкочастотному звену схемы замещения, напряжение и ток достигнут установив­шихся постоянных значений E0 и i0 (см. рис. 9.7, б).

На следующем интервале времени  весь описанный процесс повторится на втором элементарном участке эквивален­тной схемы (см. рис. 9.7, в). К моменту времени t= 2tна этом участке ток и напряжение также достигнут своих постоянных зна­чений i0 и E0(см. рис. 9.7, г).

Таким образом, процесс заряда элементарных емкостей С че­рез элементарные индуктивности Lсоздает волны тока и напря­жения (в рассматриваемом приближении с прямоугольными фрон­тами), распространяющиеся от источника вдоль линии. Такие вол­ны называются бегущими. Бегущие волны, распространяющиеся вдоль линии от источника, называются падающими, а к источни­ку — отраженными. Как видно на рис. 9.7, на всех элементарных участках линии, охваченных падающими волнами, устанавлива­ются постоянные напряжение и ток.

Внесем два уточнения в характер протекания процессов в ли­нии, связанных с приближенным представлением линии схемой замещения. На рис. 9.7, б, г фронт волны показан в форме прямо­угольной ступеньки и разделяет всю линию на два участка — правый и левый. На левом участке, полностью охваченном волной, ток и напряжение имеют установившиеся значения i0 и E0, а на правом участке, куда волна еще не пришла, их значения равны нулю.

Первое уточнение связано с характером движения фронта вол­ны. Как было показано, фронт волны перемещается вдоль линии скачками на расстояние х по истечении очередного интервала времени t. Реально же фронт волны перемещается плавно, без скачков. Кажущееся скачкообразное движение фронта волны воз­никает из-за того, что идеальная линия с непрерывно распреде­ленными параметрами была заменена схемой замещения с сосре­доточенными параметрами Lи С конечной величины. Если в схеме замещения элементарные участки с конечной длиной х заменить участками с бесконечно малой длиной dx и с соответ­ственно бесконечно малыми параметрами dL = L()dxи dC = C0dx, то время заряда емкостей dC будет тоже бесконечно малым и рав­ным d/. При этом фронт волны будет перемещаться непрерывно со скоростью V= dx/dt, равной фазовой скорости волны Vф.

 


Рис. 9.8. Искажение фронта волны в бесконечной идеальной длин­ной линии

Второе уточнение связано с формой фронта волны. Обратимся вновь к рис. 9.7, а, в. Фронты волн тока или напряжения будут иметь форму ступеньки, если ток iw будет изменяться мгновенно в конце интервала времени t от нуля до значения i0. Однако этого не происходит, поскольку ток iw меняется в течение интервала времени t непрерывно по нелинейному закону. В результате одновременно с емкостью С1 будет заряжаться и емкость С2 следующего звена схемы замещения, только током с меньшим значением. Когда к концу первого интервала времени t на емкости С1 установится напряжение E0, на емкости С2 тоже будет существовать некоторое меньшее напряжение. По той же причине на емкостях последующих элементарных участков установятся напряжения, значения которых будут убывать по нелинейному закону с ростом номера элементарной ячейки. Таким образом, фронт волны будет криволинейным. На рис. 9.8 показано искажение фронта волны в бесконечной идеальной длинной линии.

Искажение фронта волны (его длительность) будет тем боль­ше, чем большими значениями погонных параметров L0 и С0 ха­рактеризуется линия.

При распространении волны напряжения вдоль длинной ли­нии на поверхности ее проводов появляется заряд q, погонное значение которого q0= C0E0. Перемещаясь вдоль линии на рассто­яние dxзавремя dt, волна напряжения сообщает линии дополни­тельный заряд dq = q0dx=C0E0dx. Можно сказать, что этот заряд распространяется вдоль линии от источника до точки расположе­ния фронта волны напряжения или тока. Это эквивалентно тому, что в линии наряду с волнами тока и напряжения существует волна заряда. Ток и заряд в волне связаны соотношением

                                                  

Учитывая, что , получим выражение для фазовой скорости волны в идеальной длинной линии