Основы информатики и вычислительной техники: Учебно-практическое пособие, страница 18

Теоремы В.А. Котельникова, являющиеся основой современной теории передачи сообщений, очень удобны для исследования всевозможных линий связи, вследствие того, что для этих линий известны частотные характеристики, а спектр передаваемых сигналов ограничен. Другое дело – реальные сигналы, имеющие конечную длительность Т. Для их точного представления, в отличие от моделей сигналов с ограниченным спектром (1.51), необходим спектр, который простирался бы от нуля до бесконечности. Теоретически, чтобы избежать погрешности дискретизации, для такого спектра требуется бесконечно большая частота взятия отсчетов. Практически выбирают такую частоту дискретизации, при которой погрешность не превышает заданной величины В этой связи теорему 2  В.А. Котельникова можно рассматривать как приближенную для функций с неограниченным спектром. На практике частоту отсчетов часто определяют как 2fmk, т.е. интервал между отсчетами

                                     (1.52)

где fm – максимальная допустимая частота в спектре сигнала Х(t)

k – коэффициент запаса (обычно ). Так как безграничный частотный спектр заменяется ограниченным, вне которого спектральная плотность принимается равной нулю, то погрешность дискретизации будет определяться соотношением составляющих, лежащих внутри спектра и вне его.

Другой, практически легко реализуемый путь определения оптимального интервала дискретизации ∆t непрерывного сигнала Х(t) заключается в построении автокорреляционной функции сигнала и нахождении интервала корреляции τк .Дискретные отсчеты, взятые через интервал ∆t=τк, будут независимыми и информативными; для их обработки могут быть использованы методы математической статистики.

В случае, когда непрерывный сигнал Х(t) представлен своими дискретными значениями, полученными при равномерной  или неравномерной дискретизации, он может быть заменен некоторой приближающей (аппроксимирующей) зависимостью. В общем случае исходный сигнал может быть аппроксимирован специальной функцией или полиномом, график которого проходит через известные дискретные значения. Наиболее часто используются степенные алгебраические полиномы, но так как обычно исходный сигнал задается в графическом или табличном, а не в аналитическом виде, то проведение аппроксимации полиномами с порядком выше первого затруднительно. При аппроксимации полиномом первого порядка все точки кривой, соответствующие дискретным моментам времени, соединяются отрезками прямых (кусочно-линейная аппроксимация). Алгебраические полиномы удобны для программирования и обработки с помощью вычислительной техники

При квантовании исходного сигнала по уровню возникает погрешность квантования. Так как в процессе преобразования значение сигнала Х(t) обычно отображается ближайшим уровнем квантования Хm, то все значения, кроме кратных Х, представляются с некоторой погрешностью, максимальное значение которой равно 0,5 .

В заключение этого параграфа отметим, что дискретизация и квантование находят широкое применение в преобразователях информации, используемых для связи вычислительных устройств с реальными объектами.

1.4 Модуляция и демодуляция сигналов.

         Для обеспечения передачи информационного сигнала по каналам связи, например, радио- или телефонному, используется специальное преобразование сигнала – модуляция. Сущность процесса модуляции состоит в том, что для передачи информационного сигнала используется высокочастотный сигнал (сигнал-переносчик), называемый несущим, который обладает свойством хорошего прохождения (наименьшего затухания) в канале связи, а один из параметров этого несущего сигнала изменяется в соответствии с изменением информационного (модулирующего) сигнала. В результате образуется сигнал, называемый модулированным. Обратное преобразование – переход от модулированного сигнала к информационному называется демодуляцией. Технические средства, реализующие модуляцию и демодуляцию, называются соответственно модулятором и демодулятором и обычно конструктивно выполняются в виде одного устройства – модема.