Основы информатики и вычислительной техники: Учебно-практическое пособие, страница 17

В результате дискретизации во времени исходный непрерывный сигнал Х(t) представляется конечной последовательностью отдельных  значений Х(ti), измеренных с шагом дискретизации ∆t=ti-ti-1. По значениям Х(ti) можно восстановить исходный сигнал Х(t) с некоторой погрешностью. Функцию Х(t), полученную в результате восстановления (интерполяции) по значениям Х(ti), называют воспроизводящей. При дискретизации возникает вопрос о точности преобразования, которая очевидно зависит от частоты отсчетов функции fk=1/∆ti, т.е. от выбранного шага дискретизации ∆ti. С одной стороны, очевидно, что с уменьшением (увеличением) ∆ti точность преобразования будет расти (уменьшаться) за счет увеличения (уменьшения) количества отсчетов. С другой стороны, очевидно, что нет смысла стремиться всегда брать отсчеты как можно чаще, независимо от вида сигнала Х(t), так как в случае медленно изменяющегося сигнала Х(t) два соседних значения Х(ti) и  Х(ti+1) могут быть настолько связаны (коррелированны)  между собой, что по одному из них Х(ti) можно прогнозировать другое Х(ti+1), т.е. никакой новой информации о сигнале при его последующем восстановлении по отсчетам это не дает. Проблема обеспечении точности дискретизации может быть сформулирована следующим образом: с каким максимальным интервалом необходимо брать отсчеты значений сигнала Х(ti), чтобы не пропустить существенных его изменений или, другими словами, какое минимальное количество отсчетов необходимо брать для обеспечения заданной точности воспроизведения сигнала Х(t). От этого, в конечном счете, зависит количество информации, которую надо хранить и преобразовывать в вычислительном устройстве.

Возможны различные пути решения указанной проблемы.

В общем виде задача о представлении некоторого сигнала, являющегося непрерывной функцией времени, в виде конечного числа значений, взятых для дискретных значений времени, решена В.А. Котельниковым. В двух теоремах В.А. Котельников применительно к системе передачи сообщений по линии связи определил, как следует выбрать частоту дискретизации, обеспечивающую по полученным дискретным данным последующее воспроизведение исходного сигнала с заданной точностью.

Теорема 1. Любую функцию Х(t), имеющую спектр частот от 0 до fm, можно представить суммой функции sinx/x, т.е. рядом:

        ,        (1.51)

где K – целое число,

      C– отсчеты мгновенных значений функции Х(t) с шагом дискретизации ∆t,

      ωm = 2πfm, fm – максимальная частота в спектре частот сигнала Х(t), Гц

    ωm – круговая частота.

Из этой теоремы может быть сделан и обратный вывод: любая функция, представленная рядом Котельникова (1.51), имеет спектр, состоящий из частот от 0 до fm.

Теорема 2. Любая функция Х(t), содержащая частоты от 0 до fm, полностью определяется дискретными значениями этой функции, следующими друг за другом с частотой 2fm, т.е. через интервал  сек. Таким образом, передачу непрерывного сигнала Х(t) с ограниченным спектром частот, поступающего от какого-либо датчика, можно свести к передаче последовательности дискретных чисел – значений этого сигнала, взятых через интервал времени 1/2fm; число этих значений равно 2fm. Через полученные значения ординат, при обработке результатов измерений, можно провести единственным способом воспроизводящую непрерывную функцию. Поэтому, проще говоря, нет смысла брать отсчеты чаще, чем интервал 1/2fm, так как никакой новой информации о функции при ее последующем восстановлении по отсчетам это не дает. Следует подчеркнуть, что сказанное справедливо только в том случае, если в получаемой информации действительно отсутствует частоты выше fm.