Выразим , через значения функции в узлах , т. е. через значения .
Для этого воспользуемся разложением в ряд Тейлора.
(23)
Отсюда
, (24)
где .
Так как полагаем , то можем записать
+ , (так называемая правая производная) (25)
где - погрешность первого порядка по шагу.
(26)
, (27)
где .
+ ( левая производная). (28)
Из (23) вычтем (26) и после небольших преобразований получим
.
Отсюда
, (29)
где .
+ (центральная производная). (30)
Сложив (23) и (26), получим симметричное выражение для
.
Отсюда выражение для будет иметь вид
, (31)
где .
+ . (32)
Это не единственно возможные выражения для и . Исследуя значения в других точках, кроме рассмотренных , можно получить другие выражения для производных, но они будут и более сложными.
Заменив в уравнении (20) производные и выражениями (30) и (32), получим
. (33)
Таким же образом заменяем производные и в граничных условиях (21).
, . Такие замены производных в граничных точках имеют погрешность порядка .
Можно получить более точные формулы для аппроксимации (замены) производных в граничных точках. Для этого рассмотрим разложение в ряд Тейлора и .
(34)
(35)
Далее (34) умножим на 4 и из вычтем . После небольших преобразований получим
, (36)
где .
Аналогично получим выражение для :
, (37)
где .
Выражения (36) и (37) имеют погрешность второго порядка по шагу, т.е..
Рассмотрим на отрезке [a, b] граничную задачу для дифференциального уравнения
(38)
с условиями
, (39)
где p(x), q(x), f(x) непрерывны на отрезке [a, b].
Решение уравнения (38), удовлетворяющее краевым условиям (39), будем искать в виде
, (40)
где - решение соответствующего однородного уравнения
, (41)
а - частное решение неоднородного уравнения
. (42)
Подставим (40) в первое условие граничной задачи 39), получим
. (43)
Для того, чтобы равенство (43) было справедливо при любом с, необходимо и достаточно, чтобы сомножитель = 0 и должны выполняться следующие равенства:
= 0, (44)
. (45)
Положим
, (46)
где постоянная k отлична от нуля.
Если , то
, (47)
если , то
. (48)
Видно, что является решением задачи Коши для однородного уравнения (41), удовлетворяющим начальным условиям (46), а - решение задачи Коши для неоднородного уравнения (42), удовлетворяющее начальным условиям (47) или (48).
Теперь подставим (40) во второе условие граничной задачи (39) и выразим постоянную с
. (49)
При этом предполагается, что . Если выполнено это условие, то краевая задача (38)-(39) имеет единственное решение, в противном случае она или совсем не имеет решений, или их бесчисленное решение.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.