(9.50)
Из (9.35) получим спектральное распределение нелинейных продуктов третьего порядка:
(9.51);
(9.52)
Вывод выражений (9.49)—(9.52) производится точно так же, как и соответствующих выражений (9.36), (9.37), (9.44), (9.45) полученных для работы без перекоса уровней. Отличие заключается только в том, что при определении функций и используется единичная функция энергетическо-1 го спектра входного сигнала с перекосом уровней , тогда как при определении функций Y2(f) и Y3(f) — без перекоса уровней . Методика расчета функций и точно такая же, как и функций Y2(F) и Y3(f). На рис. 9.19, в приведена функция H'(F—f) произведение которой с функцией H'(f) (рис. 9.19, б) определяет [см. (9.50)]. Пределы интегрирования определяются заштрихованными участками функций H'(f) и H'(F-f).
Вид функций и определяется характером спектра входного сигнапа или функцией H'(f). Удобно ввести в рассмотрение функцию, частотная характеристика которой с точностью до постоянного слагаемого ) совпадает с частотной зависимостью уровня передачи p(f): const
Основные варианты используемых на практике функций и приведены на рис. 9.20. Кривая 1 соответствует работе без перекоса уровней, кривая j 2 — работе с линейным перекосом уровней, 3 — с криволинейным перекосом j уровней, 4— с кусочно-линейным перекосом. Наиболее прост для аналитического расчета функций и вариант, соответствующий линейному перекосу уровней. Для него
где k = — коэффициент пропорциональности, — перекос уровней; g», Рн и gB, pB — значения функций g(f) и p(f) на нижней fH и верхней fB частотах группового спектра, А/=/в— /н.
Определим значения ^н и #в исходя из условия (9.48):
Используя (9.53) и учитывая, что decAr= 10*= е2'зх, получим
где g0 = 101gG0.
Отсюда, взяв 10lg от левой и правой частей, находим
Учитывая (9.53), получим
где Ag(/) отражает отклонение распределения уровней от равномерного при введении перекоса.
Очевидно,
(9.54)
Поскольку функции p(f) и g(f) пропорциональны, то
(9.55)
Здесь = ,— эквивалентный уровень на выходе усилителя во всех каналах при отсутствии предыскажения уровней. Если для группового (линейного) тракта известны уровни рН и рВ, то из (9.55) нетрудно найти р0:
(9.56)
Подставляя (9.54) в (9.50) и (9.52) и опуская промежуточные выкладки, получим значения коэффициентов спектрального распределения нелинейных продуктов на нормированной частоте [11, 16]:
(9.57)
(9.58)
В приведенных выше выражениях исчисляется в децибелах. Анализируя (9.57), (9.58), нетрудно показать, что при 0 эти выражения сходятся соответственно к (9.42) и (9.46). Как будет ясно из дальнейшего, удобно использовать при расчете функции и где функции и определяются из (9.57), (9.58), а функция — из (9.55): . На рис. 9.21 в качестве примера приведены значения и (пунктирные кривые) для нескольких значений и =3.
Анализируя распределение нелинейных продуктов, можно сделать следующие выводы:
1. При введении предыскажений характер спектрального распределения нелинейных продуктов также существенно неравномерен и зависит от величины перекоса уровней Ар.
2. Защищенность канала ТЧ от нелинейных продуктов зависит от его расположения в диапазоне линейных частот и от перекоса уровней. При введении предыскажений защищенность каналов ТЧ, расположенных в области нижних частот, ухудшается.
3. При введении перекоса уровней защищенность от собственных шумов выравнивается, в то время как защищенность от нелинейных продуктов становится более неравномерной. Поэтому выбирают такой перекос уровней, когда суммарная защищенность от собственных шумов и нелинейных продуктов становится более равномерной в линейном спектре частот.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.