Исследование свойств адаптивных систем с эталонными моделями: Методические указания к лабораторным работам по курсу “Адаптивные системы управления”

Страницы работы

Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.

Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.

Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.

Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.

Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.

Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.

Содержание работы

Министерство образования и науки  Российской Федерации

Федеральное агентство по образованию

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

 Исследование Свойств Адаптивных систем

с эталонными моделями

Методические указания к лабораторным работам по курсу “Адаптивные системы управления” для студентов специальности 220201 - "Управление и информатика в технических системах"

Новосибирск – 2006

Оглавление

1.  Лабораторная работа №1. Одноканальная система с градиентным

      алгоритмом адаптации ..................................................................................................................... 3

2.  Лабораторная работа №2. Система с пропорционально-                            интегральным алгоритмом изменения  коэффициентов регулятора, синтезированным методом скоростного градиента.................................................................................................................. 10

3.  Лабораторная работа №3. Система с алгоритмом адаптации на основе      второго метода Ляпунова.................................................................................................................. 16

4.  Лабораторная работа №4. Исследование адаптивной системы             пониженного порядка.................................................................................................................. 22

     Список рекомендуемой литературы................................................................................................................... 27

Лабораторная работа №1

 Одноканальная система с градиентным алгоритмом адаптации

Цель работы: изучение свойств системы с алгоритмом адаптации, синтезированным по градиентному методу, анализ влияния темпа параметрических возмущений на качество процессов и величину управляющего воздействия.

1.  Основные сведения

Градиентный алгоритм относится к базовым алгоритмам адаптации. Вектор градиента всегда направлен в сторону максимального локального роста функции. Следовательно, если вектор скорости настраиваемых параметров () направить в сторону антиградиента , то реализуется последовательный спуск в локальный минимум

                                                      (1.1)

Проведем синтез адаптивной системы для одноканального линейного объекта управления

                                           (1.2)

где u, y – управляющая и выходная переменные соответственно. Параметры объекта ai, bj точно не определены, но заданы (n + m + 1) – мерной областью возможных значений Wab. Операторная запись уравнения (1.2) имеет вид

                                                   (1.3)

где        an (p) = pn + an-1 pn-1 + …+ a0 ,            bm (p) = bm pm + bm-1 pm-1 + … + b0 ,    pi = di / dti – оператор i- кратного дифференцирования.

          Цель управления зададим предельным соотношением

                                                 (1.4)

где yм (t) – эталонная траектория движения, которая удовлетворяет уравнению эталонной модели

                                                                                (1.5)

здесь   r – эталонное входное воздействие на систему. Оператор  является устойчивым, т.е. корни уравнения  имеют отрицательную действительную часть.

Для определения структуры «идеального» закона управления выполним преобразования уравнений (1.2) и (1.5). Вычтем из обеих частей уравнения (1.3) выражение (an (p) y):

0 = bm (p) u – an (p) y .                                             (1.6)

 Полагая y = yм , запишем уравнение (1.5)

  .                                                   (1.7)

Прибавим к обеим частям уравнения (6) выражение () :

                                  (1.8)

где  Далее вычтем из (1.8) уравнение (1.5):

                                    (1.9)

где e = yyм. Пусть “идеальный” закон управления имеет вид

                                         (1.10)

тогда

                                                    (1.11)

 Так как полином является устойчивым по условию, то e® 0 при t ® ¥, т.е. закон управления (1.10) позволяет обеспечить выполнение цели управления (1.4). Учитывая неизвестность коэффициентов полиномов bm (p) и Dn-1 (p), реальный закон управления запишем в виде

                                            (1.12)

с операторами

Если в процессе настройки коэффициентов регулятора (1.12) будет выполнено  при t®¥ ,  то e® 0,  что показывает достижение поставленной цели управления.

          Для определения целевой функции введем новое рассогласование (s) , которое возникает в результате замены yм на  yв уравнении эталонной модели (1.5),

                                                 (1.13)

Если вычесть из (1.13) уравнение (1.5), то получим уравнение, описывающее связь между рассогласованиями e и s :

.                                                    (1.14)

Из (1.14) следует, что если s® 0 при t®¥, то в силу устойчивости  имеем       e® 0 при t®¥ . Следовательно, будет выполнена поставленная цель. Это позволяет задать целевую функцию в виде

                                                     (1.15)

Выполним преобразования уравнения (1.13). Просуммируем уравнения объекта (1.8) и регулятора (1.12):

,

приведем подобные и учтем (1.13):

                     (1.16)

Введем обозначения для вектора неизвестных параметров

вектора настраиваемых параметров

и вектора координатных переменных

Похожие материалы

Информация о работе

Тип:
Методические указания и пособия
Размер файла:
6 Mb
Скачали:
0

Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.

Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.

Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.

Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.

Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.

Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.