шаг 4: сравнить каждый невычеркнутый элемент lijp с суммой (li,p+ lp,j)p для формирования значений li,j и ni,j на очередном шаге итерации:
a) если (li,p+ lp,j)p<li,jp, то li,jp+1=(li,p+ lp,j)p, а ni,j (p+1)=p;
b) если (li,p+ lp,j)p>li,jp, то li,jp+1=li,jp; ni,j (p+1)= ni,j p.
шаг 5: если p<n, то принять p=p+1 и вернуться к шагу 4, иначе конец.
Ниже таблицами показан процесс вычисления от p=0 до p=7
l0 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
n0 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x0 |
0 |
9 |
∞ |
3 |
∞ |
∞ |
∞ |
∞ |
x0 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x1 |
9 |
0 |
2 |
∞ |
7 |
∞ |
∞ |
∞ |
x1 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x2 |
∞ |
2 |
0 |
2 |
4 |
8 |
6 |
∞ |
x2 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x3 |
3 |
∞ |
2 |
0 |
∞ |
∞ |
5 |
∞ |
x3 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x4 |
∞ |
7 |
4 |
∞ |
0 |
10 |
∞ |
9 |
x4 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x5 |
∞ |
∞ |
8 |
∞ |
10 |
0 |
7 |
12 |
x5 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x6 |
∞ |
∞ |
6 |
5 |
∞ |
7 |
0 |
10 |
x6 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x7 |
∞ |
∞ |
∞ |
∞ |
9 |
12 |
10 |
0 |
x7 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
l1 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
n1 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x0 |
0 |
9 |
∞ |
3 |
∞ |
∞ |
∞ |
∞ |
x0 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x1 |
9 |
0 |
2 |
12 |
7 |
∞ |
∞ |
∞ |
x1 |
x0 |
x1 |
x2 |
x0 |
x4 |
x5 |
x6 |
x7 |
|
x2 |
∞ |
2 |
0 |
2 |
4 |
8 |
6 |
∞ |
x2 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x3 |
3 |
12 |
2 |
0 |
∞ |
∞ |
5 |
∞ |
x3 |
x0 |
x0 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x4 |
∞ |
7 |
4 |
∞ |
0 |
10 |
∞ |
9 |
x4 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x5 |
∞ |
∞ |
8 |
∞ |
10 |
0 |
7 |
12 |
x5 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x6 |
∞ |
∞ |
6 |
5 |
∞ |
7 |
0 |
10 |
x6 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x7 |
∞ |
∞ |
∞ |
∞ |
9 |
12 |
10 |
0 |
x7 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
l2 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
n2 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x0 |
0 |
9 |
11 |
3 |
16 |
∞ |
∞ |
∞ |
x0 |
x0 |
x1 |
x1 |
x3 |
x1 |
x5 |
x6 |
x7 |
|
x1 |
9 |
0 |
2 |
12 |
7 |
∞ |
∞ |
∞ |
x1 |
x0 |
x1 |
x2 |
x0 |
x4 |
x5 |
x6 |
x7 |
|
x2 |
11 |
2 |
0 |
2 |
4 |
8 |
6 |
∞ |
x2 |
x1 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x3 |
3 |
12 |
2 |
0 |
19 |
∞ |
5 |
∞ |
x3 |
x0 |
x0 |
x2 |
x3 |
x1 |
x5 |
x6 |
x7 |
|
x4 |
16 |
7 |
4 |
19 |
0 |
10 |
∞ |
9 |
x4 |
x1 |
x1 |
x2 |
x1 |
x4 |
x5 |
x6 |
x7 |
|
x5 |
∞ |
∞ |
8 |
∞ |
10 |
0 |
7 |
12 |
x5 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x6 |
∞ |
∞ |
6 |
5 |
∞ |
7 |
0 |
10 |
x6 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x7 |
∞ |
∞ |
∞ |
∞ |
9 |
12 |
10 |
0 |
x7 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
l3 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
n3 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x0 |
0 |
9 |
11 |
3 |
15 |
19 |
17 |
∞ |
x0 |
x0 |
x1 |
x1 |
x3 |
x2 |
x2 |
x2 |
x7 |
|
x1 |
9 |
0 |
2 |
4 |
6 |
10 |
8 |
∞ |
x1 |
x0 |
x1 |
x2 |
x2 |
x2 |
x2 |
x2 |
x7 |
|
x2 |
11 |
2 |
0 |
2 |
4 |
8 |
6 |
∞ |
x2 |
x1 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x3 |
3 |
4 |
2 |
0 |
6 |
10 |
5 |
∞ |
x3 |
x0 |
x2 |
x2 |
x3 |
x2 |
x2 |
x6 |
x7 |
|
x4 |
15 |
6 |
4 |
6 |
0 |
10 |
10 |
9 |
x4 |
x2 |
x2 |
x2 |
x2 |
x4 |
x5 |
x2 |
x7 |
|
x5 |
19 |
10 |
8 |
10 |
10 |
0 |
7 |
12 |
x5 |
x2 |
x2 |
x2 |
x2 |
x4 |
x5 |
x6 |
x7 |
|
x6 |
17 |
8 |
6 |
5 |
10 |
7 |
0 |
10 |
x6 |
x2 |
x2 |
x2 |
x3 |
x2 |
x5 |
x6 |
x7 |
|
x7 |
∞ |
∞ |
∞ |
∞ |
9 |
12 |
10 |
0 |
x7 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
l4 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
n4 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x0 |
0 |
7 |
5 |
3 |
9 |
13 |
8 |
∞ |
x0 |
x0 |
x3 |
x3 |
x3 |
x3 |
x3 |
x3 |
x7 |
|
x1 |
7 |
0 |
2 |
4 |
6 |
10 |
8 |
∞ |
x1 |
x3 |
x1 |
x2 |
x2 |
x2 |
x2 |
x2 |
x7 |
|
x2 |
5 |
2 |
0 |
2 |
4 |
8 |
6 |
∞ |
x2 |
x3 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x3 |
3 |
4 |
2 |
0 |
6 |
10 |
5 |
∞ |
x3 |
x0 |
x2 |
x2 |
x3 |
x2 |
x2 |
x6 |
x7 |
|
x4 |
9 |
6 |
4 |
6 |
0 |
10 |
10 |
9 |
x4 |
x3 |
x2 |
x2 |
x2 |
x4 |
x5 |
x2 |
x7 |
|
x5 |
13 |
10 |
8 |
10 |
10 |
0 |
7 |
12 |
x5 |
x3 |
x2 |
x2 |
x2 |
x4 |
x5 |
x6 |
x7 |
|
x6 |
8 |
8 |
6 |
5 |
10 |
7 |
0 |
10 |
x6 |
x3 |
x2 |
x2 |
x3 |
x2 |
x5 |
x6 |
x7 |
|
x7 |
∞ |
∞ |
∞ |
∞ |
9 |
12 |
10 |
0 |
x7 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
l5 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
n5 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x0 |
0 |
7 |
5 |
3 |
9 |
13 |
8 |
18 |
x0 |
x0 |
x3 |
x3 |
x3 |
x3 |
x3 |
x3 |
x4 |
|
x1 |
7 |
0 |
2 |
4 |
6 |
10 |
8 |
15 |
x1 |
x3 |
x1 |
x2 |
x2 |
x2 |
x2 |
x2 |
x4 |
|
x2 |
5 |
2 |
0 |
2 |
4 |
8 |
6 |
13 |
x2 |
x3 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x4 |
|
x3 |
3 |
4 |
2 |
0 |
6 |
10 |
5 |
15 |
x3 |
x0 |
x2 |
x2 |
x3 |
x2 |
x2 |
x6 |
x4 |
|
x4 |
9 |
6 |
4 |
6 |
0 |
10 |
10 |
9 |
x4 |
x3 |
x2 |
x2 |
x2 |
x4 |
x5 |
x2 |
x7 |
|
x5 |
13 |
10 |
8 |
10 |
10 |
0 |
7 |
12 |
x5 |
x3 |
x2 |
x2 |
x2 |
x4 |
x5 |
x6 |
x7 |
|
x6 |
8 |
8 |
6 |
5 |
10 |
7 |
0 |
10 |
x6 |
x3 |
x2 |
x2 |
x3 |
x2 |
x5 |
x6 |
x7 |
|
x7 |
18 |
15 |
13 |
15 |
9 |
12 |
10 |
0 |
x7 |
x4 |
x4 |
x4 |
x4 |
x4 |
x5 |
x6 |
x7 |
|
l6 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
n6 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x0 |
0 |
7 |
5 |
3 |
9 |
13 |
8 |
18 |
x0 |
x0 |
x3 |
x3 |
x3 |
x3 |
x3 |
x3 |
x4 |
|
x1 |
7 |
0 |
2 |
4 |
6 |
10 |
8 |
15 |
x1 |
x3 |
x1 |
x2 |
x2 |
x2 |
x2 |
x2 |
x4 |
|
x2 |
5 |
2 |
0 |
2 |
4 |
8 |
6 |
13 |
x2 |
x3 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x4 |
|
x3 |
3 |
4 |
2 |
0 |
6 |
10 |
5 |
15 |
x3 |
x0 |
x2 |
x2 |
x3 |
x2 |
x2 |
x6 |
x4 |
|
x4 |
9 |
6 |
4 |
6 |
0 |
10 |
10 |
9 |
x4 |
x3 |
x2 |
x2 |
x2 |
x4 |
x5 |
x2 |
x7 |
|
x5 |
13 |
10 |
8 |
10 |
10 |
0 |
7 |
12 |
x5 |
x3 |
x2 |
x2 |
x2 |
x4 |
x5 |
x6 |
x7 |
|
x6 |
8 |
8 |
6 |
5 |
10 |
7 |
0 |
10 |
x6 |
x3 |
x2 |
x2 |
x3 |
x2 |
x5 |
x6 |
x7 |
|
x7 |
18 |
15 |
13 |
15 |
9 |
12 |
10 |
0 |
x7 |
x4 |
x4 |
x4 |
x4 |
x4 |
x5 |
x6 |
x7 |
|
l7 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
n7 |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
|
x0 |
0 |
7 |
5 |
3 |
9 |
13 |
8 |
18 |
x0 |
x0 |
x3 |
x3 |
x3 |
x3 |
x3 |
x3 |
x4 |
|
x1 |
7 |
0 |
2 |
4 |
6 |
10 |
8 |
15 |
x1 |
x3 |
x1 |
x2 |
x2 |
x2 |
x2 |
x2 |
x4 |
|
x2 |
5 |
2 |
0 |
2 |
4 |
8 |
6 |
13 |
x2 |
x3 |
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x4 |
|
x3 |
3 |
4 |
2 |
0 |
6 |
10 |
5 |
15 |
x3 |
x0 |
x2 |
x2 |
x3 |
x2 |
x2 |
x6 |
x4 |
|
x4 |
9 |
6 |
4 |
6 |
0 |
10 |
10 |
9 |
x4 |
x3 |
x2 |
x2 |
x2 |
x4 |
x5 |
x2 |
x7 |
|
x5 |
13 |
10 |
8 |
10 |
10 |
0 |
7 |
12 |
x5 |
x3 |
x2 |
x2 |
x2 |
x4 |
x5 |
x6 |
x7 |
|
x6 |
8 |
8 |
6 |
5 |
10 |
7 |
0 |
10 |
x6 |
x3 |
x2 |
x2 |
x3 |
x2 |
x5 |
x6 |
x7 |
|
x7 |
18 |
15 |
13 |
15 |
9 |
12 |
10 |
0 |
x7 |
x4 |
x4 |
x4 |
x4 |
x4 |
x5 |
x6 |
x7 |
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.