- уравнение окружности
п 4. Параметрические уравнения линий
В некоторых случаях при составлении уравнения линий текущие координаты не связаны одним уравнением, а каждую координату в отдельности выражают в виде функции нового переменного, например t и получают уравнения вида:
Условные величины Х и У для каждого значения t рассматривать как координаты некоторой точки М. При изменении t величины Х и У меняются, следовательно точка М перемещается по плоскости.
Равенства (1) называются параметрическими уравнениями траектории точки М; аргумент t называется переменным параметром.
Параметрические уравнения играют важную роль в механики, где они используются в качестве уравнений движения. Параметр t играет в этом случае роль времени.
Если из уравнений (1) исключить параметр t, то получим уравнение между Х и У вида F (x, y) = 0
Пример исключить параметр t
Получим уравнение окружности с центром в начале координат.
п 5. Алгебраические линии
Определение. Уравнение F (x, y) называется алгебраическим, если выражение F (x, y) есть сумма конечного числа слагаемых вида, где k и m - целые неотрицательные числа. А – действительное число.
При этом наибольшая из степеней k + m называется степенью уравнения
х + у – 5 - уравнение 1-й степени;
ху + 7 - х + 4у - уравнение 2-й степени
х3у4 – у2х + 3 = 0 - уравнение 7-й степени
Общий вид уравнения 1-й степени Ах + Ву + С = 0
Общий вид уравнения 2-й степени
Ах2 + Вху +Су2 + Dx + Fy + F = 0
У нас линии 1-го и 2-го порядка
§ 4 Прямая на плоскости
п 1. Угловой коэффициент
α – угол наклона прямой к положительному направлению оси ох.
Определение. Тангенс угла наклона прямой к положительному направлению оси ох называется угловым коэффициентом этой прямой.
или эта формула выражает угловой коэффициент прямой по двум ее точкам.
п 2. Уравнение прямой с угловым коэффициентом
Пусть дана некоторая прямая. Выведем уравнения данной прямой, полагая известным ее угловой коэффициент k и величину b – направленного отрезка , который она отсекает на оси у (рис. 15).
Выберем текущую точку прямой М (х,у) (рис. 16) и точку В (о; b)
отсюда у = kx + b уравнение прямой с угловым коэффициентом
п 3. Уравнение прямой, проходящей через данную точку М1 (х1; у1)
и заданным угловым коэффициентом
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.