Пусть для величины, точное значение которой есть X, мы получили некоторое приближенное значение X*. Абсолютная величина разности между точным значением X и его приближенное величиной X*, называется абсолютной погрешностью. Приближенного числа X*, и обозначается , то есть, . Как правило, точное значение X нам неизвестно, как неизвестна и абсолютная погрешность . Но зато, можно определить число, которое эта погрешность заведомо не превосходит. Его обычно и принимают за абсолютное значение погрешности искомой величины. Так при взвешивании какого либо предмета на аптекарских весах, мы не можем определить точный вес предмета, однако гарантируем, что погрешность взвешивания не будет превышать 0,01 г. Эту величину и называют абсолютной погрешностью.
Абсолютная погрешность далеко не всегда точно характеризует погрешность вычислений. Так например, пусть погрешность взвешивания предмета равна 100 г, если взвешивался например автомобиль, то эта погрешность очень мала, а если взвешивался например телефон, то эта погрешность очень велика. Поэтому было введено еще одно важное, с точки зрения точности вычислений понятие – это относительная погрешность.
Относительной погрешностью приближенного значения X* называют отношение абсолютной погрешности к абсолютному значению величины.
Для примера возьмем измерения длин радиоволн с абсолютной погрешностью равной одному метру. Если после измерений получим, что длина волны равна 1000 метров, то относительная погрешность равна 1/1000=0,001, а если длина волны равна 4 метрам, то относительная погрешность равна 1/4=0,25.
Для удобства анализа относительной погрешности очень часто ее представляют в виде процентов к значению измерений:
тогда, в результате решения задачи измерения длины волны, в случае если это километровый диапазон, то относительная погрешность составляет всего 0,1%, то есть очень мало, а если метровый, то 25%, то есть очень много.
Как говорилось ранее, очень часто в процессе вычислений приходиться иметь дело с бесконечными дробями. Такие числа приходиться округлять. Обычно округление производят по следующему правилу (иногда бывает необходимость использования и других правил). Пусть какое то число имеет в своей записи более чем k цифровых знаков и мы хотим округлить его, оставив ровно k знаков. Тогда, если (k+1)-я цифра числа меньше чем 5, то все ее цифры, начиная с (k+1)-ой просто отбрасываются, а если (k+1)-я цифра больше чем 5, то все цифры, начиная с (k+1)-ой тоже отбрасываются, при этом k-я цифра увеличивается на единицу. Если (k+1)-я цифра есть 5, а за ней найдется хоть одна отличная от нуля цифра, то поступают, как в случае, если (k+1)-я цифра больше пяти, если за ней нет цифр отличных от нуля, тогда отбрасывают «хвост», начиная с (k+1)-ой цифры, и если k-я цифра четная, то оставляют ее без изменений, если нечетная, увеличивают на единицу. Например, оставив три знака после запятой в числе 5,6785 поучим 5,678, а если оставим три знака после запятой в числе 4,5675, то получим 4,568.
Принято считать, что в приближенном значении величины все цифры верные, если его абсолютная погрешность не превосходит единицы последнего разряда. При выполнении этого условия можно по записи приближенного значения определить его абсолютную погрешность. И наоборот, по абсолютной погрешности числа, можно определить число верных знаков в его записи. Например, если известно, что все цифры записи числа X=15 верны, то его абсолютная погрешность , а если известно, что все цифры записи числа X=3,14 верны, то его абсолютная погрешность . Аналогично наоборот, если задано число X=1,2345 и абсолютная погрешность при этом , то можно говорить о том, что верны только цифры 1 и 2, то есть можно считать верным только число X=1,2 и в окончательном результате остальные цифры должны отбрасываться.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.