На схеме приведенной на рисунке 10 на вход сумматора поступает два одноразрядных числа записанных в двоичной системе счисления. На выходу получаем одно двухразрядное число представляющее собой сумму одноразрядных чисел записанных на входе. Преобразуем таблицу 13 в таблицу истинности для сложения одноразрядных чисел, записанных в двоичной системе счислении, таблица 14.
Таблица 14.
Результат работы сумматора, основанного на выполнении логических операций.
X |
Y |
PS |
0 |
0 |
00 |
0 |
1 |
01 |
1 |
0 |
01 |
1 |
1 |
10 |
В результате получили таблицу истинности, аналогичную таблице выполнения операции сложения в двоичной системе счисления таблица 6.
Аналогичным образом организованы и другие математические операции в устройствах вычислительной техники.
5. Введение в алгоритмизацию.
5.1. Понятие алгоритма.
В повседневной жизни, для достижения какой либо цели нам постоянно приходиться сталкиваться с различными правилами, определяющими последовательность действий. Подобные правила очень многочисленны. Например, для того, чтобы позвонить по телефону –автомату нежно выполнить определенную последовательность действий (опустить монету, снять трубку, набрать номер), вычислить результат какой либо функции или решить уравнение. Правила такого рода встречаются нам на каждом шагу, такие правила называют алгоритмами.
Решение любой задачи из любой области в основном представляет собой нахождение правил, то есть последовательности решения, или по другому алгоритма.
Первым свойством алгоритма, является то, что он носит пошаговый(дискретный) характер определяемого им процесса.
Вторым свойством алгоритма является массовость, то есть существует некоторое множество объектов, которые могут служить исходными данными для рассматриваемого алгоритма. Например, для алгоритмов выполнения арифметических операций – сложения, вычитания умножения и деления, такими данными являются все действительные числа.
Например, для того, чтобы сложить два числа 15 и 17 используется алгоритм сложения в столбик.
15 +17 |
32 |
Суть этого алгоритма заключается в поразрядном сложении всех разрядов чисел, а если в результате сумм разрядов получается числа большее 9, то старший разряд полученной суммы переноситься в следующий разряд числа. Если записать последовательность действий, которые мы выполняем при сложении двух то это и будет алгоритм выполнения операции сложения:
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.