Напомним определение комплексной экспоненты – . Тогда
-- разложение в ряд Маклорена. Радиус сходимости этого ряда равен +∞, значит комплексная экспонента аналитична на всей комплексной плоскости и
(exp z)'=exp z; exp 0=1. (2)
Первое равенство здесь следует, например, из теоремы о почленном дифференцировании степенного ряда.
Синусом комплексного переменного называется функция
Косинус комплексного переменного есть функция
Гиперболический синус комплексного переменного определяется так:
Гиперболический косинус комплексного переменного -- это функция
Отметим некоторые свойства вновь введеных функций.
A. Если x∈ ℝ , то cos x, sin x, ch x, sh x∈ ℝ .
Б. Имеет место следующая связь тригонометрических и гиперболических функций:
cos iz=ch z; sin iz=ish z, ch iz=cos z; sh iz=isin z.
В. Основные тригонометрическое и гиперболическое тождества:
cos2z+sin2z=1; ch2z-sh2z=1.
Доказательство основного гиперболического тождества.
Основное тригонометрическое тождество следует из оновного гиперболического тождества при учете связи тригонометрических и гиперболических функций (см. свойство Б)
Г Формулы сложения:
В частности,
Д. Для вычисления производных тригонометрических и гиперболических функций следует применить теорему о почленном дифференцировании степенного ряда. Получим:
(cos z)'=-sin z; (sin z)'=cos z; (ch z)'=sh z; (sh z)'=ch z.
Е. Функции cos z, ch z четны, а функции sin z, sh z нечетны.
Ж. (Периодичность) Функция ez периодична с периодом 2π i. Функции cos z, sin z периодичны с периодом 2π , а функции ch z, sh z периодичны с периодом 2πi. Более того,
Применяя формулы суммы, получаем
З. Разложения на действительную и мнимую части:
Если однозначная аналитическая функция f(z) отображает биективно область D на область G, то D называется областью однолистности.
И. Область Dk={ x+iy | 2π k≤ y<2π (k+1)} для любого целого k является областью однолистности функции ez, которая отображает ее на область ℂ* .
Доказательство. Из соотношения (5) следует инъективность отображения exp:Dk→ ℂ . Пусть w -- любое ненулевое комплексное число. Тогда, решая уравнения ex=|w| и eiy =w/|w| с действительными переменными x и y (y выбираем из полуинтеравала [2πk, 2π (k+1))), получим z=x+iy∈Dk такое, что exp z=w. Сюръективность доказана.
Следствием предыдущего свойства является
К. Область значений. Область значений функций cos z, sin z, ch z, sh z есть все поле комплексных чисел.
Л. Нули Решением уравнения sin z=0 является множество {πk | k∈ ℤ } . Нули функции cos z -- множество { π /2+πk | k∈ ℤ } . Нулями функции sh z является множество { πki | k∈ ℤ} , а нули функции ch z -- множество { π/2i+πki | k∈ ℤ } .
Доказательство. Имеет место соотношения sin z=0 тогда и только тогда, когда eiz -e-iz =0 Это равносильно соотношению e2iz =0, что дает 2iz=2πik. Окончательно, z=2πk (k∈ ℤ ). Аналогично доказываются утверждения для остальных функций.□
Функция tg z=sin z /cos z называется тангенсом, а функция th z= sh z/ ch z называется гиперболическим тангенсом. Производные тангенсов вычисляются c использованием известного правила "производная отношения":
(tg z)'=1/cos2z , (th z)'= 1/ch2z .
Область допустимых значений тангенса tg z есть многосвязная область ℂ \{π /2+πk | k∈ ℤ }
Главным значением аргумента ненулевого комплексного числа z назовем то единственное действительное число 𝜑 ∈ [0,2π ), для которого z /| z| =exp(i𝜑 ). Обозначаем главное значение аргумента как arg z.
Всевозможные решения уравнения exp(i𝜑 )= z /| z| относительно переменной 𝜑, т.е. множество {arg z+2π k ∣ k∈ ℤ } назовем аргументом комплексного числа z и обозначим Arg z. Таким образом Arg z -- многозначная функция.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.