- правый смежный класс элемента g группы G по группе H
Порядок группы .
Порядок подгруппы группа.
Теорема (теорема Лагранжа): Порядок любой подгруппы является делителем порядка группы, т. е.
Док-во: - различные левые классы смежности, образующие разбиение G.
к – это число различных левых смежных классов (индекс подгруппы Н).
, т. к. различные смежные классы не пересекаются.
Покажем, что :
Следствия:
1. Число различных смежных левых классов равно числу различных смежных правых классов (к) по одной и той же группе Н.
2. Порядок любого элемента группы является делителем ее порядка.
- подгруппа группы .
- порядок элемента g.
3. Если порядок группы простое число, то группа циклическая.
делит , т. к.
- простое число
4. Если - простое число, то у группы нет подгрупп, отличных от несобственных и .
Пример: Пример смежных классов.
- подгруппа:
Смежные классы (левые):
; ; ;
Всего два различных: и .
Еще полезные определения:
Опр.: - группа, - группа, нормальный делитель (В коммутативных группах все подгруппы – нормальные делители).
Опр.: Факторгруппа: , - группа, - подгруппа, Н – нормальный делитель (т. е. ).
Рассмотрим множество сложных классов по нормальным делителям с операцией *:
Система - группа:
Док-во:
Теорема: Множество всех различных левых смежных классов элементов группы по подгруппе образуют разбиение множества G.
Свойства разбиения:
1).
2).
3).
1.
2. , т. е.
3.
, т. к. , т. е.
Есть аналогичные свойства для правых смежных классов.
Два элемента a и b группы G входят в один и тот же левый смежный класс по подгруппе Н тогда и только тогда, когда
По свойству групп о решении уравнений:
Все смежные классы образуют разбиение, следовательно
, т. е. принадлежит тому же смежному классу, что и "а", а следовательно и b принадлежит тому же классу разбиения.
¨ Упражнение
Доказать, что все циклические группы одного порядка изоморфны.
(Группа
называется циклической, если все элементы представляются в виде степеней
некоторого выделенного порождающего элемента).
Двоичные групповые коды.
Рассмотрим систему передачи двоичной информации от источника к получателю по ненадежному каналу (рис 1).
Рис. 1.
И - Источник, К - Канал, П - Получатель
Считая, что в канале нет ошибок вида пропадания или вставки символов (идеальная синхронизация) единственным видом ошибок является замена одного символа другим. В двоичном канале наличие ошибки означает замену символа противоположным (0 на 1 или 1 на 0). Замена символа на противоположный может быть выражена как результат операции “исключающее или” искаженного символа с константой 1, а отсутствие ошибки может быть выражено как операция “исключающее или” с константой 0. Поэтому такой идеализированный двоичный канал можно представить как устройство, где входная последовательность y поэлементно “складывается” (поэлементно выполняется операция “исключающее или”) с последовательностью ошибок e (рис. 2). В результате получается последовательность на выходе канала ỹ=y+e. Здесь символ + означает поэлементную операцию над двоичными последовательностями ỹi=yiÅei.
Для борьбы с ошибками на передающей стороне вводиться некоторая избыточность в передаваемой информации, а на приемной стороне на основании принятой последовательности и статистических свойств источника информации и канала выбирается наиболее правдоподобная комбинация возможной передаваемой последовательности и последовательности ошибок ê. Такая схема иллюстрируется рис. 3.
И - источник, КУ - кодирующее устройство (кодер), ДКУ - декодирующее устройство (декодер), П - получатель
Чтобы такая схема работала, необходимо, чтобы зависимость y=f(x) была обратимой. Тогда=ỹ+ê, а =f -1(). Можно также написать ê=ỹ+f().
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.