1. Восстановить отношение включения на подмножествах трехэлементного множества, воспользовавшись диаграммой Хассе. Сколько этапов необходимо?
2. Докажите, что отношение порядка всегда можно восстановить по диаграмме Хассе.
(Рассмотрите отрезок между элементами, находящимися в отношении порядка и покажите, что можно построить цепь простых отрезков между такими элементами, если множество конечное)
Опр.: n-местная (n-арная) операция на множестве A – любое функциональное отношение f из множества An в множество A.
Обозначение: , где f(x1,…,xn)=y.
Это частный случай (n+1) – арного отношения на А.
n=1 – унарная операция;
n=2 – бинарная
n=3 – тернарная
Набор из называется алгебраической системой
множество операции отношения
Опр.: Набор из множества и операций называется Алгеброй.
Опр.: Набор из множества и отношений называется Математической моделью.
Опр.: Набор из множества и f1,…,fm операций (n1,…,nm-арных) называется алгеброй типа (n1,…,nm).
Пример: - алгебра типа (2, 2, 1)
Опр.: - замкнуто относительно n-арной операции f на А, если
Опр.: , замкнуто относительно f1,…,fm Þ - подалгебра
Пример: ; R+ замкнуто относительно - подалгебра
Опр.: f – ассоциативна, если
- ассоциативна
- не ассоциативна , т. к.
- не ассоциативна
Опр.: f – коммутативна, если
- коммутативна
Рассмотрим две бинарные операции на А: f и y.
Опр.: f дистрибутивна относительно y слева, если
Опр.: f дистрибутивна относительно y справа, если
Опр.: f дистрибутивна относительно y, если f дистрибутивна относительно y слева и f дистрибутивна относительно y справа.
Инфиксная запись:
Ассоциативность: x (y z) = (x y) z
Коммутативность: x y = y x
Дистрибутивность слева относительно * : x (y*z) = (x y)*(x z)
Дистрибутивность справа относительно *: (x*y) z = (x z)*(y z)
Пример на R+:
· дистрибутивно слева и справа относительно + (или просто дистрибутивно)
+ не дистрибутивно слева и справа относительно ·
Опр.: Соотношением гомоморфизма между алгебрами одинакового типа и называется любое функциональное отношение :
Опр.: Если F – биективно, то F – изоморфизм алгебр. (Взаимно однозначное соответствие).
Пример: - изоморфизм
- изоморфизм
Отношение изоморфизма (~) является отношением эквивалентности на множестве алгебр одинакового типа.
Чтобы показать, что ~ - эквивалентность, необходимо показать рефлексивность, симметричность и транзитивность:
1. Рефлексивность:
6
2. Симметричность:
Рассмотрим
Т. е. если F – биекция из А в В, то F-1 – биекция Þ F-1 – изоморфизм Þ
3. Транзитивность
Пусть F – изоморфизм F и G , т. к.
G – изоморфизм
Рассмотрим отношение
Т. е. H – функция.
Т. к. H, G – биекции, то
Пример:
т. к. F не биективна.
¨ Упражнение
Рассмотрите три алгебры
<R,+> - Сложение вещественных чисел
<R+,×> - Умножение вещественных положительных чисел
<R-,*> - Умножение отрицательных вещественных чисел с заменой знака: x*y=-(x×y).
Построить все шесть функций, являющихся изоморфизмами каждой пары алгебр с учетом их порядка в паре.
Опр.: Бинарная алгебра с ассоциативной операцией называется полугруппой (иногда называют группоидами).
Опр.: Элемент называется левым нейтральным элементом , если
Элемент называется правым нейтральным элементом , если
Элемент называется нейтральным элементом , если
Опр.: Бинарная алгебра называется моноидом, если
Свойство моноидов:
Т. е. в моноиде единственный нейтральный элемент.
Пример: 1. - моноид с нейтральным элементом 0 (коммутативный).
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.