Дифференциал и интеграл булевой функции, страница 2

f0 = 0;                                                        ∂f0/∂x2 | & = 0 & 0 = 0;

f1 = x1 & x2;                                               ∂f1/∂x2 | & = 0 & x1 = 0;

_

f2 = x1 & x2;                                               ∂f2/∂x2 | & = x1 & 0 = 0;

f3 = x1;                                                       ∂f3/∂x2 | & = x1 & x1 = x1;

_                                                                                                                     _

f4 = x1 & x2;                                               ∂f4/∂x2 | & = 0 & x1 = 0;

f5 = x2;                                                       ∂f5/∂x2 | & = 0 & 1 = 0;

_        _                                                                                                   _

f6 = x1 & x2 v x1 & x2;                                ∂f6/∂x2 | & = x1 & x1 = 0;

f7 = x1 v x2;                                                ∂f7/∂x2 | & = x1 & 1 = x1;

_         _                                                                                                 _

f8 = x1 & x2;                                               ∂f8/∂x2 | & = x1 & 0 = 0;

_         _                                                                              _                     

f9 = x1 & x2 v x1 & x2;                                ∂f9/∂x2 | & = x1 & x1 = 0;

_                                                                                                        

f10 = x2;                                                      ∂f10/∂x2 | & = 1 & 0 = 0;

_                                                                                                    

f11 = x1 v x2;                                               ∂f11/∂x2 | & = 1 & x1 = x1;

_                                                                                                            _         _         _             

f12 = x1;                                                      ∂f12/∂x2 | & = x1 & x1 = x1;

_                                                                                                             _                  _                     

f13 = x1 v x2;                                                ∂f13/∂x2 | & = x1 & 1 = x1;

_       _                                                                                                              _         _                     

f14 = x1 v x2;                                                ∂f14/∂x2 | & = 1 & x1 = x1;

f15 = 1;                                                        ∂f15/∂x2 | & = 1 & 1 = 1.

_

То есть ∫ xldx2 = {x1; x1 v x2; x1 v x2} = {f3; f7; f11 }.

&

Далее рассмотрим некоторые общие свойства дифференциала и интеграла булевой функции.

Основное тождество

Интеграл от булевой функции F(xl,x2,...,xn) по переменной xn+1 для операции р

∫ F(xl,x2,...,xn)d xn+1

р

равен дифференциалу функции F(xl,x2,...,xn+1) по переменной xn+1 для операции р, причем выполняется следующее равенство:

∂F(xl,x2,...,xn,xn+1)

_______________         = ∫ F(xl,x2,...,xn)d xn+1

∂xn+1                             p           р

Данное тождество следует из определения дифференциала и интеграла булевой функции.

Теорема 1.1. Дифференциал для операции дизъюнкция логических функций равен дизъюнкции дифференциалов данных функций для операции дизъюнкция:

        m                                                                   m

∂( V fi (xl,x2,...,xn))                       =  V   ∂(fi (xl,x2,...,xn))

       i=1                                             i=1

_______________                          _______________

∂x k                           v                                        ∂x k                        v .

Доказательство. По определению