Основные теоремы и законы: гироскопический момент, теорема Резаля, закон прецессии, страница 7

Данная скорость может быть получена лишь при условии вращения гироскопа относительно неподвижной точки с угловой скоростью .

Из рис. 5.3 легко видеть, что это направление совпадает с направлением угловой скорости прецессии.

3. Закон прецессии

Для дальнейших выводов введем следующие обозначения:

 - угловая скорость вращения ротора ;

 - полярный момент ротора;

 - единичный орт, совпадающий с полярной осью ротора .

Тогда кинетический момент, которым обладает быстровращающийся ротор, может быть записан как

.

(5.12)

С учетом (5.11) после дифференцирования по времени выражения (5.12) получаем

,

(5.13)

где  - линейная скорость конца единичного вектора, связанного с полярной осью вращения ротора.

Скорость  может быть получена лишь в результате вращения орта, т.е. вращения полярной оси ротора вокруг оси, не совпадающей с самим ортом.

Таким вращением является экваториальная составляющая вращения гироскопа, например,  (рис. 5.4).

Таким образом,

.

(5.14)