Обработка и фильтрация изображений. Особенности изображений как информационных процессов. Типы помех и искажений, их свойства и модельные представления, страница 8

Одной из таких операций является определение типа помех (аддитивные, мультипликативные или смешанные) и их основных характеристик: , , закона распределения, пространственной автокорреляционной функции (АКФ) и т.д.  Простейший вариант анализа при отсутствии импульсных помех состоит в следующем. Для рассматриваемого изображения выберите несколько (три-пять) однородных участков с различными средними значениями  и определите для них  и . Если независимо от  примерно одинаковыми остаются значения , то можно сделать предварительный вывод о превалирующем влиянии аддитивных помех, если же  примерно одинаковы полученные оценки , то изображение искажено мультипликативной помехой. Если же не выполняется ни условие примерного постоянства , ни условие примерного равенства оценок , то следует считать, что мультипликативные и аддитивные помехи вносят сравнимый вклад и для определения их статистических характеристик необходимо использовать более сложные методы анализа.

Например, оценки относительной дисперсии мультипликативного шума , полученные для семи однородных участков прямоугольной формы, выбранных на показанном на рис. 14.8 изображении РБО, равны: 0,00523, 0,00409, 0,00499, 0,00510, 0,00689, 0,00856, 0.00447. Как видно, полученные оценки достаточно сильно различаются. Причин может быть несколько: а) имеет место заметное влияние аддитивных помех, особенно для участков со сравнительно малыми значениями ; б) объем выборок (количество пикселов, принадлежащих выбранным участкам, недостаточен для того, чтобы выводы были достоверными в статистическом смысле; в) выбранные участки на самом деле не являются достаточно однородными и небольшие локальные изменения  приводят к получению завышенных оценок  и . Таким образом, необходимо использовать более сложные методы анализа. Кроме того, рассматриваемый метод практически неприменим, если изображение имеет мало однородных участков (является текстурным).          

           

а)                                                                            б)

Рис.14.8,а. Реальное РЛИ, сформированное РБО MM-диапазона, с отмеченными однородными участками (а) и визуализированная двумерная пространственная АКФ для одного из участков квадратной формы (64х64 пиксела) (б), более светлый цвет соответствует большим значениям АКФ.  

Отметим, что в случае априорно известного типа помех (аддитивные или мультипликативные) применимы автоматизированные методы оценивания соответственно  или . Эти методы основываются на разбиении изображения на перекрывающиеся или неперекрывающиеся блоки размером от 5х5 до 7х7 пикселов. Затем для всех  блоков получают оценки  или . Предполагая, что оценки, полученные для блоков, соответствующих однородным участкам, достаточно близки к истинным значениям дисперсии или относительной дисперсии, и такие оценки формируют моду распределения, находят координату этой моды и принимают ее в качестве итоговой оценки. Для этого либо строят гистограмму полученных оценок, либо вычисляют мириаду выборки при значении параметра k, в несколько раз меньшем ширины основного распределения. В частности, для РЛИ на рис. 14.8,а гистограммным методом получена итоговая оценка =0,0045, а мириадным методом - =0,0061.          

Однородные участки изображений, если они выбраны правильно, можно использовать и для оценки закона распределения помех. Для грубого оценивания применяется визуальный анализ гистограмм распределения значений изображений и оценки коэффициентов асимметрии и эксцесса. При более строгом анализе используются специальные тесты для проверки гипотез. Кроме того, если импульсные помехи не наблюдаются, то для однородных или текстурных участков, особенно квадратной или прямоугольной формы, легко получить оценки двумерных пространственных АКФ (пример см. на рис. 14.8,б) или спектра. Затем, используя большинство стандартных программных продуктов для обработки изображений или специализированные средства типа ENVI, можно провести более детализированный анализ, например, определить ширину главного лепестка и уровни боковых лепестков двумерной АКФ, построить ее сечения и т.п.