Прямой ток, т. е. ток при прямом включении p–n перехода, практически не изменяется при увеличении частоты, так как сопротивление rд при прямом включении на много меньше сопротивления барьерной емкости.
Свойства p–n перехода существенно зависят от температуры окружающей среды, а значит и температуры p–n перехода. При увеличении температуры возрастает генерация пар носителей зарядов, т. е. увеличивается число основных носителей зарядов. Это приводит к увеличению прямого тока при неизменной величине прямого напряжения. Очевидно, что с увеличением температуры увеличивается число и неосновных носителей заряда, что заметно увеличивает обратный ток p–n перехода (рисунок 1.9). Увеличение обратного тока ухудшает однопроводные свойства p–n перехода. В этом состоит основное отрицательное влияние повышения температуры на свойства p–n перехода.
Рисунок 1.9 – Вольтамперные характеристики p-n перехода
при различных температурах
Для различных полупроводниковых материалов различны пределы температуры нагрева, которые определяются допустимым значением обратного тока. Для германия он составляет +(80÷100)˚C, а для кремния +(150÷200)˚C. Видно, что кремний более стабилен к нагреву.
Максимально допустимое минусовое воздействие температуры определяется теоретически энергией ионизации донорных и акцепторных примесей и достигает -200˚C. Практически, исходя из реальных климатических условий, предельное значение отрицательной температуры для германия и кремния берется в пределах –(60÷70)˚C.
2 Полупроводниковые диоды.
2.1 Понятие, конструкция p–n перехода диода, системы маркировки диодов.
Полупроводниковым диодом называется ПП прибор с двумя выводами и содержащий один или несколько p–n переходов.
В группу ПП диодов входят выпрямительные, высокочастотные, импульсные диоды, стабилитроны, варикапы, туннельные диоды, неуправляемые и управляемые многослойные переключающие диоды (динисторы и тринисторы), свето и фотодиоды.
Конструкция p–n перехода. По конструкции p–n перехода диоды делятся на плоскостные и точечные. Плоскостной диод характеризуется тем, что размер площади p–n перехода значительно больше его толщины (рисунок 2.1,а).
Рисунок 2.1 – Плоскостной (а) и точечный (б) p-n переход
Такие диоды могут пропускать большой ток, но из-за значительной площади p-n перехода у них велика барьерная ёмкость. Это снижает величину максимальной частоты проходящего через них тока.
Точечные диоды характеризуются тем, что площадь p – n перехода соизмерима с толщиной перехода или меньше его (рисунок 2.1,б). При его изготовлении к поверхности отшлифованной пластины германия или кремния n–проводимостью прижимают (подпружинивают) заострённую металлическую иглу, выполненную, например, из бериллиевой бронзы. В месте соприкосновения бериллиевой иглы с полупроводником в результате дефундирования бериллия образуется некоторая область с дырочной проводимостью. Между этой областью P и полупроводником образуется p–n переход. Алюминиевые пластины (рисунок 2.1) используются для присоединения выводов к полупроводникам. Из-за малой площади точечного p–n перехода через точечный диод может протекать ток небольшой величины. По этой же причине барьерная ёмкость точечного диода мала, что значительно увеличивает значение максимальной частоты протекающего тока.
Маркировка. В системе обозначений (маркеров) диодов отображаются материал, конструкция перехода, область применения и предельные электрические свойства диода [2]. Существенно отличается система условных обозначений до 1964 г. после 1964 г.
У диодов малой мощности (радиотехнического применения), разработанных до 1964 г. условные обозначения состояли из трёх элементов.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.