Модели объектов регулирования. Модели элементов систем автоматического регулирования, страница 4

Приток отток газа регулируются перемещением штоков кранов х1, х2 и, как следствие, изменением проходных сечений кранов F1 и F2 соответственно.

Газ под давлением р1 большим критического (истечение сверхкритическое) поступает через кран сечением F1 в ресивер объема V, где устанавливается давление Р и через кран сечением F2 поступает к потребителю под давление р2, меньшим критического (истечение докритическое).

Примем, что процесс осуществляется без теплообмена с внешней средой (адиабатный процесс). При этом в связи с тем, что давление газа в ресивере изменяется незначительно, температура газа в нем, при изменении давления, изменяется также незначительно.

Запишем балансовое уравнение.

В установившемся состоянии, когда имеется равенство поступающего Qпр 0 и расходуемого Qот ­0 количества газа в единицу времени, давление газа в ресивере остается постоянным (P = P0).

                                                                                     (01)

где   Qпр 0 – расход газа на притоке, м3/с;

         Qот 0 – расход газа на оттоке, м3/с.

Вес газа G в объеме V равен

                                                                                        (02)

где   G – вес газа, кг;

         g - удельный вес газа, кг/м3;

         V – объем, м3.

При отклонениях притока и оттока газа от равновесных значений газ аккумулируется в ресивере или расходуется из него. Таким образом, давление в ресивере не остается постоянным. При изменении давления Р в ресивере постоянного объема V будет изменяться удельный вес газа g.

                                                                      (03)

Если учесть некоторые внешние возмущения, связанные с изменением режимов работы потребителя газа и компрессора, то

                                                                (04)

Если обозначить через рх  давление на входе в сужение (кран), а через ру давление газа на выходе из него, то для докритического истечения можно записать

,                                                                                   (05)

где      - критическое отношение давлений.

Приток газа в ресивер и отток из него определяется в этом случае соответственно зависимостями

                            (06)

и

                            (07)

где   F1 и F2 – эффективные площади проходных сечений кранов, м2;

         g – ускорение силы тяжести, м/с2;

         kАД – показатель адиабаты;

         P – давление в ресивере, Па;

         v – удельный объем, м3/кг.

Так как между р1 и v1, а также между Р и V связь однозначна и выражается уравнением адиабатного процесса, можно составить две функциональные зависимости

                                                                      (08)

При надкритическом истечении газа, когда

   и  

приход и отток газа определяются соотношениями

                                       (09)

и

,                                      (10)

следовательно функциональные зависимости приобретают вид

                                                                          (11)

Для дальнейших рассуждений выбираем докритическое истечение газа

Структурная схема приведена на рис. 2.

Рис. 2. Структурная схема объекта регулирования.

После разложения зависимостей 08 в ряд Тейлора и линеаризации для притока и оттока можно написать

                                      (12)

Учитывая также, что при адиабатном процессе (n = kАД)

уравнение  04 можно записать в виде

            (13)

Выражение

                                                                          (14)

является фактором устойчивости ресивера.

Рассмотрим подробнее процесс подвода и отвода рабочего тела в ресивер. Начнем с того, что запишем статические характеристики системы

Рис. 3. Статические характеристики систем подвода рабочих тел в ресивер и отвода из него.

Из приведенного рисунка следует, что величина фактора устойчивости существенно положительна.

Введем относительные координаты

Тогда уравнение 13 можно записать в виде

                                            (15)

где                  

           

Если принять, что давления р1 и р2 неизменны, а также неизменно положение регулирующего органа х2, то уравнение примет вид

                                                                               (16)

где   Т – постоянная времени ресивера.

8 .  Теоретическая модель резервуара.

Содержательное описание объекта.

Имеем емкость-накопитель кислоты, задача которой, в случае отказа подачи рабочего тела в линию, в течение определенного времени поддерживать поступление кислоты на вход последующего технологического аппарата. 

Объект регулирования - резервуар с линиями подвода и отвода жидкости.

Рабочее тело – кислота. Удельный вес  γ = 10240, [Н/м3].

Регулируемый параметр – высота жидкости в резервуаре.

Конструктивные параметры объекта:

Диаметр резервуара - 2 [м].

Высота резервуара - 10 [м].

Диаметр подводящей трубы d1 = 0.1 [м].

Диаметр отводящей трубы d2 = 0.15 [м].

Краны, расположенные на входе и выходе резервуара, имеют линейную расходную характеристику.

Номинальные  значения параметров процесса.

Давление на входе –   p1,н = 21.58·104, [Па].

Давление на выходе – p2,н = 2.943·104, [Па].

Коэффициент истечения для крана на входе μ1,ном = 0.3.

Коэффициент истечения для крана на выходе μ2,ном = 0.2.

Составление аналитической модели объекта.

Начнем с уравнения баланса для установившегося состояния притока и оттока жидкости в гидравлической системе. Будем считать, что это происходит при номинальных параметрах.

                                                                                    (01)