Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
«Сибирский государственный индустриальный университет»
Кафедра организации перевозок и управления на транспорте
ОПТИМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ ПЕРЕВОЗОК МЕЖДУ ТРЕМЯ ВИДАМИ ТРАНСПОРТА
Методические указания к выполнению курсовой работы
по дисциплине «Взаимодействие транспортных систем»
для студентов специальности 190701 Организация перевозок
и управления на транспорте (автомобильном)
Новокузнецк 2012
ББК 658.073(07) 0-627
Рецензент
к.т.н., гл. инженер 000 «СибМет» Гусаков К.В.
0-627 Оптимальное распределение перевозок между тремя видами транспорта : метод, указ. / Сиб. гос. индустр. ун-т ; сост. : Н.В. Смирнов, А.В. Новичихин, В.А. Буйвис. - Новокузнецк: Изд. центр СибГИУ, 2012. - 21 с.
Даны методические рекомендации к решению задач по распределению перевозок в транспортном узле.
Предназначены для студентов, обучающихся по специальности 190701 Организация перевозок и управление на транспорте (автомобильном) всех форм обучения.
Содержание
Введение.......................................................................................................... 4
1 Постановка задачи оптимального распределения перевозок 5
2 Выбор и определение показателей оптимальности для решения задачи 6
2.1 Автомобильный транспорт 6
2.2 Железнодорожный транспорт 7
2.3 Речной транспорт 7
3 Решение задачи оптимального распределения 8
3.1 Определение удельных затрат на доставку груза 8
3.2 Составление матрицы задачи 11
3.3 Нахождение оптимального плана перевозок 14
Библиографический список.......................................................................................................... 18
Приложение А.......................................................................................................... 19
Приложение Б.......................................................................................................... 20
Введение
Основная задача транспорта - полное и своевременное удовлетворение потребностей народного хозяйства и населения в перевозках, повышение эффективности и качества работы транспортной сети.
Для транспортного комплекса с его сложным, непрерывным и динамичным характером работы, требующим слаженного функционирования разных видов транспорта, проблема взаимодействия и координации их работы является особенно актуальной. Помимо этого в настоящее время большое количество грузов перевозится на сети и в транспортных узлах с участием двух и более видов транспорта в смешанном и прямом смешанном сообщениях.
Одной из задач оптимального взаимодействия транспортных систем различных видов транспорта является задача оптимального распределения ограниченных ресурсов и перевозок между ними.
Задача оптимального распределения перевозок решается, как правило, для уже существующей сети путей сообщения и в рамках имеющейся провозной способности различных видов транспорта. Поэтому в качестве показателей оптимальности при решении этой задачи могут быть приняты эксплуатационные расходы или тарифы на перевозку грузов.
Задача оптимального распределения перевозок формулируется и решается по типу двухэтапной транспортной задачи линейного программирования.
Задание для выполнения курсовой работы выдается преподавателем по порядковому номеру студента в списке группы. Курсовая работа состоит из трех разделов. В методических указаниях представлены все необходимые технические параметры и расходные ставки, необходимые для расчетов.
1 Постановка задачи оптимального распределения перевозок
Допустим, в узле имеется поставщики Rj (i=l, 2,..., т) одинаковой или взаимозаменяемой продукции, потребители этой продукции Pj(/=1,2,..., л) и пункты перевалки 77^ (к=\,2,...,г) с одного вида транспорта на другой. Ресурсы поставщика Rjравны а^, потребность потребителя Р- равна bj, перерабатывающая способность пункта перевалки 77^ равна q^.
Задан полигон транспортной сети с указанием длины участков.
Требуется распределить перевозки между различными видами транспорта, имеющимися в узле, таким образом, чтобы суммарные затраты на перевозку всего объема необходимого потребителям груза с учетом затрат на перевалку его с одного вида транспорта на другой в пунктах перевалки были бы минимальными. Тогда целевую функцию можно записать в следующем виде:
„ т г / \ г п т п
С= Е Е \Cik+Sk}xik+Y, Е С,.-Х,. + Е Е Си-Хи->ТОШ9 (1) i=\k=\xlkk;lkk=\j=\ щ щ К/=1 и и
где Xik, Хц, Xtj- объемы перевозок по связям соответственно i-ый
поставщик - к-ый пункт перевалки, к-ый пункт перевалки - j-ый потребитель, i-ый поставщик -j-ый потребитель (одним видом транспорта без перевалки);
Cik, Сц, Сц - затраты на перевозку одной тонны груза по соответствующим связям;
Sk- затраты на перевалку одной тонны груза на к-ом пункте перевалки.
Необходимо отыскать такие значения Xik9X^-, Xtj-, которые минимизируют целевую функцию (1) и удовлетворяют ограничениям, налагаемым на решения двухэтапной транспортной задачи линейного программирования.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.