Форма тела |
Re |
|
Шар |
0,47 |
|
0,22 |
||
Круглый цилиндр: |
||
1,2 |
||
0,35 |
||
Круглый цилиндр при обтекании в направлении его оси: |
||
0,91 |
||
0,85 |
||
0,87 |
||
0,99 |
При определении числа Re характерный размер равен длине пластины.
В случае турбулентного пограничного слоя для пластины длиной с эквивалентной шероховатостью поверхности (А.Альтшуль)
. (4.164)
В общем случае суммарное сопротивление предлагается определить по формуле, предложенной еще Ньютоном:
, (4.165)
где - коэффициент лобового сопротивления.
Коэффициент зависит от формы обтекаемого твердого тела, числа Рейнольдса и интенсивности турбулентности потока жидкости или газа.
Для тела в виде шара при числах
. (4.166)
А в случае, если , рекомендуется определять по формуле Озеена:
. (4.167)
Рис. 4.27. Коэффициент сопротивления шара
В результате проведения экспериментальных исследований для шара были получены данные о зависимости от Re, они представлены на рис. 4.27.
Осаждение (всплывание) твердых частиц в покоящейся жидкости
Падение (осаждение) твердых тел в покоящейся жидкости может быть:
• свободное, когда на падающее тело не оказывают влияния соседние твердые тела и стенки емкости, в которой происходит осаждение;
• стесненное, когда, наоборот, на осаждение тела влияют соседние тела и стенки емкости;
• стесненное однородных по крупности, плотности и форме частиц;
• стесненное неоднородных частиц.
Движение твердых частиц при осаждении в покоящейся или сравнительно медленно движущейся жидкости является, как правило, равномерным. Скорость равномерного движения твердой частицы в достаточно большом объеме покоящейся жидкости (свободное осаждение) получила название гидравлической крупности .
Возьмем твердую частицу сферической формы диаметром d и массой , которая осаждается в большом объеме воды. Применительно к движущейся частице можно написать уравнение равновесия
, (4.168)
где ; G - сила тяжести частицы с учетом ее взвешивания в воде; F - сила полного сопротивления движению (сила лобового сопротивления).
В связи с тем что движение считается равномерным, ускорение частицы равно нулю: . Следовательно, можно написать: G = F.
Вес частицы сферической формы с учетом архимедовой силы
, (4.169)
где - плотность твердой частицы; - плотность воды.
Силу лобового сопротивления при падении частицы определим по формуле (4.169)
(4.170)
где - скорость равномерного движения частицы в воде.
Приравняв значения этих сил и сделав некоторые преобразования, получим значение гидравлической крупности, зависящее от коэффициента лобового сопротивления :
. (4.171)
В случае когда , будет происходить всплывание частиц, и скорость всплывания
(4.172)
Однако недостатком формул (4.171) и (4.170) является присутствие в них коэффициента лобового сопротивления , имеющего сложные зависимости от числа Рейнольдса и ряда других факторов.
При движении весьма малых частиц (Re<1) уравнение (4.171) в соответствии с равенством приобретает вид уравнения Стокса:
. (4.173)
Некоторая степень неточности при определении имеет место в связи с тем, что частицы имеют форму, несколько отличную от сферической. Поэтому берется осредненное значение диаметра частицы, т.е. эквивалентный ее диаметр
, (4.174)
где - объем твердой частицы, который соответствует объему шара диаметром .
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.