Помехоустойчивость и пороговые свойства аналоговых непрерывных систем передачи. Помехоустойчивость и пороговые свойства цифровых систем передачи непрерывных сообщений

Страницы работы

Содержание работы

6.2 Помехоустойчивость и пороговые свойства аналоговых непрерывных систем передачи

Помехоустойчивость и пороговые свойства аналоговых непрерыв­ных систем передачи в общем случае зависят от многих факторов: ме­тода модуляции и ее широкополосности, метода приема (метода обра­ботки сигнала в приемном устройстве, вида помех и их статистических характеристик) вида сообщения и его статистических характеристик, отношения сигнал-помеха на входе приемника, требований к качеству передачи сообщения.

Вполне естественно, что охватить все возможное многообразие рас­сматриваемых систем передачи и условий их использования не пред­ставляется возможным. Поэтому в данном параграфе основное внима­ние будет уделено рассмотрению аналоговых непрерывных систем пере­дачи с частотной модуляцией при двух наиболее распространенных ме­тодах приема (стандартном и синхронно-фазовом) в условиях воздей­ствия белых гауссовских помех. Затем будет дана краткая сравни­тельная оценка помехоустойчивости таких систем передачи с другими видами модуляции и при воздействии других видов помех.

Механизм воздействия флуктуационной помехи. Упрощенное пред­ставление о характере воздействия флуктуационных помех на гармони­ческий сигнал дает векторная диаграмма (Рисунок 6.2, а).На этой диаграм­ме изображена сумма немодулированного гармонического сигнала (не­сущей)

Рисунок 6.2

 и узкополосной гауссовской флуктуационной помехи (на выходе поло­сового фильтра), которую можно представить в виде

где   n1(t) и n2(t) — независимые квадратурные стационарные гауссовские процессы с той же, что у n(t), спектральной плотностью мощности N0 (см. § 2.2).

Выражение для результирующего вектора суммы сигнала и помехи будет иметь вид (при φ0 = 0)

                    (6.2)

где

                             

На рисунке 6.2 изображено относительное расположение неподвижных векторов и осей (в момент t = 0), при этом предполагается, что оси координат вращаются с угловой скоростью ω0.

При большом значении отношения сигнал-помеха [когда n1(t) и n2(t) по сравнению с Uэ малы] большую часть времени имеем:

                          (6.3)

которые являются случайными процессами.

Вследствие воздействия помехи на полезный сигнал результирую­щий вектор y(t) будет флуктуировать по амплитуде и фазе, т. е. будут возникать искажения при использовании как AM так и УМ сигналов. Распределение вероятностей для a(t) и θп(t) в общем случае зависит от отношения сигнал-помеха.

При большой помехе имеем:

т. е. амплитуда и фаза сигнала будут определяться лишь помехой. Это означает, что в некоторые интервалы времени могут появиться сильные выбросы помехи в противофазе с сигналом и тогда фаза резуль­тирующего вектора станет неопределенной [вектор начнет вращаться вокруг начала координат, например, по траектории а (см. рис. 6.2, а), возвращаясь после окончания выброса в область вблизи точки А]. В этом случае произойдет скачок фазы на ±2πn рад (где п = 1,2,...) и любой частотный или фазовый демодулятор зафиксирует мгновен­ное аномальное изменение (скачок) частоты или фазы (рисунок 6.2, б), так как , и соответственно аномальный выброс напряжения на выходе демодулятора, который приведет к аномальным погрешностям при передаче непрерывных сообщений или к ошибкам при приеме элементарного символа в цифровых системах передачи.

Рисунок 6.3

Из приведенного рассмотрения видно, что при любом методе приема УМ сигналов, помимо небольших (нормальных) флуктуации фазы и частоты, могут возникать аномальные выбросы, которые, как будет по­казано несколько позднее, и определяют пороговые свойства любого приемника УМ сигналов. Поэтому при анализе помехоустойчивости и пороговых свойств систем с угловой модуляцией необходимо учитывать нормальные и аномальные составляющие погрешностей.

Имеющиеся исследования показывают, что механизм воздействия на гармонический сигнал импульсных и синусоидальных помех хотя и несколько отличается от рассмотренного, однако также приводит к возникновению нормальных и аномальных погрешностей [12].

Помехоустойчивость и пороговые свойства системы передачи с ЧМ и стандартным частотным дискриминатором. Под стандартными пони­маются различные частотные дискриминаторы (на расстроенных и свя­занных контурах, дробные и т.п.). Структурная схема расчетной моде­ли рассматриваемой системы передачи приведена на рисунке 6.3. В даль­нейшем будет предполагаться, что передаваемое сообщение λ(t) пред­ставляет собой случайный стационарный процесс с ограниченной спект­ральной плотностью мощности, т. е.  при  и 0 ≤ ω ≤ 2πFc; полосовой фильтр (усилитель промежуточной частоты УПЧ) является идеальным с полосой пропускания, равной ширине спектра УМ сигнала, т. е. . Фильтр низкой частоты ФНЧ идеальный с частотой среза Fcp = Fc. На входе приемника дей­ствует помеха n(f) типа белого гауссовского шума со спектральной плотностью мощности N0.

Похожие материалы

Информация о работе

Тип:
Методические указания и пособия
Размер файла:
1 Mb
Скачали:
0