Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.
Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.
Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.
Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.
Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.
Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.
Лекция 8
5. СТАЦИОНАРНЫЕ ЗАДАЧИ КВАНТОВОЙ МЕХАНИКИ
5.1.Частица в потенциальном ящике с бесконечно высокими стенками
Рассмотрим частицу, находящуюся в бесконечно глубокой одномерной потенциальной яме. Будем считать, что частица может двигаться только в направлении оси ОХ. Стенки ямы бесконечно высокие и представляют собой параллельные плоскости (рис.5.1). Такую прямоугольную яму называем ящиком. Она является упрощенной моделью атома водорода, в котором движется электрон. Потенциальная энергия частицы
в ящике равна нулю, а за пределами
ящика . Уравнение Шредингера Шредингера для такой частицы имеет вид:
.
B ящике U=0, поэтому .
Обозначим
. (5.1)
Тогда
.
Это известное из теории колебаний уравнение синусоидальной волны, причем k , определяемое уравнением (1) – волновое число. Решение этого уравнения имеет вид:
. (5.2)
При решении уравнения Шредингера должны выполняться граничные условия:
- так как стенки ящика бесконечно высокие, то вероятность обнаружить частицу за пределами ящика равна нулю =0. Однако - непрерывная функция, следовательно, на границах ящика также должна обращаться в ноль: , тогда и ; на правой границе ящика , поэтому n=1, 2…. Отсюда
. (5.3)
При n=0 и - вероятность обнаружить частицу хотя бы в какой-то точке пространства равна нулю, т.е. частица нигде не находится. Такого быть не может, поэтому значение п=0 лишено физического смысла..
Условие (5.3) означает что волновое число k может принимать только некоторые разрешенные значения в зависимости от целого числа п , т.е. квантуется. Из условия (5.3) также следует, что по дну ящика должно укладываться целое число полуволн де Бройля, что совпадает с условием возникновения стоячих волн в струне.
Действительно, подставим в уравнение (5.3), имеем:
; и .
Пусть частица летит к стенке ящика (рис.5.2). Справа от стенки происходит наложение двух волн де Бройля, соответствующих частице – прямой и отраженной, распространяющихся в противоположных направлениях. Стенка абсолютно отражающая, поэтому амплитуда падающей волны равна амплитуде отраженной волны, и в ящике образуется стоячая волна.
Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.
Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.
Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.
Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.
Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.
Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.