Щоб оцінити похибку наближеного розв’язку задачі, використовують інформацію, отриману в процесі чисельних розрахунків (такі оцінки називаються апостеріорними). Найефективнішими можна вважати оцінки з подвійним перерахунком.
Наявність наближених значень і , обчислених відповідно з кроками h і h/2, дає можливість зробити оцінку. Похибка методу – це , визначена в точці .
Отже, якщо , де М – невідомий коефіцієнт пропорційності, s – порядок точності методу, то
Виходить, для похибки в точці при визначенні розв’язку з кроком h маємо рівність , а при розв’язку з кроком h/2 – рівність
. (8.58)
Знайшовши різницю між наведеними вище рівностями і розв’язавши отриману рівність відносно невідомого коефіцієнта М, визначимо
.
Підставивши це значення М у формулу (8.58), одержимо . Звідси для абсолютної похибки в точці остаточно одержимо таку рівність:
.
Таку оцінку абсолютної похибки методу називають, як відомо, правилом Рунге.
Зупинимося на стійкості розрахунку. Якщо , то задача Коші для рівняння (8.54) погано обумовлена, причому, чим більше p(x), тим гірша її стійкість. А з оцінки (8.58) видно, що похибка нашого різницевого розв’язку при великих p(x) мала. Звідси виходить, що добре побудовані різницеві схеми не чуттєві до нестійкості задачі Коші. У випадку, коли , не виконується достатня умова збіжності ітераційного процесу для систем лінійних алгебраїчних рівнянь, однак у практичних обчисленнях дана обставина, як правило, виявляється несуттєвою і не викликає складностей в одержанні розв’язку.
8.4 Різницева задача на власні значення
Розглянемо диференціальну задачу Штурма-Ліувілля
Числа і відповідні функції u(x)0, що задовольняють поставлену крайову задачу називаються власними числами і власними функціями відповідно. Для даної задачі
Зауважимо, що функції um(x) є лінійно незалежними і взаємно ортогональними й можуть бути нормовані.
Для різницевої задачі на власні значення
відповідні власні функції і власні значення різницевої задачі мають вигляд
Відмітимо, що функції ym(x) є лінійно незалежними і взаємно ортогональними, як і в диференціальному випадку, й можуть бути нормовані.
Питання і завдання до розділу 8
1 Постановка задачі Коші. Дискретна задача Коші: основні поняття і визначення (сітка, сіткові функції, чисельний метод, апроксимація, збіжність).
2 Виведення формули методу Ейлера, його геометрична інтерпретація, стійкість, оцінка похибки, вплив обчислювальної похибки.
3 Методи Рунге-Кутта. Виведення формул. Оцінка похибки.
4 Явні однокрокові методи. Оцінка похибки за правилом Рунге.
5 Чисельне розв’язання задачі Коші для систем диференціальних рівнянь.
6 Апроксимація, стійкість і збіжність чисельних методів розв’язання задачі Коші.
7 Багатокрокові методи Адамса.
8 Виведення формул методу прогнозу і корекції.
9 Жорсткі задачі і методи їхнього розв’язання.
10 Застосовуючи метод Ейлера , знайти розв’язок задачі Коші у трьох послідовних точках:
11 Для задачі Коші виконати один крок довжини 0.1 за методом Ейлера й оцінити похибку знайденого значення за правилом Рунге.
12 Методом Рунге-Кутта 2 порядку точності знайти розв’язок системи диференціальних рівнянь у двох послідовних точках ,.
13 Оцінити похибку апроксимації похідної різницевим відношенням .
14 Звести рівняння другого порядку до системи рівнянь першого порядку і скласти розрахункові формули методу прогнозу і корекції для розв’язку отриманої системи рівнянь , .
15
З'ясувати, чи апроксимують методи
a) b)
перше рівняння задачі Коші
16 Для розв’язання задачі Коші застосовується метод вигляду Визначити порядок апроксимації.
17 Дано систему ОДУ першого порядку з постійними коефіцієнтами , причому відомі власні значення матриці :
a) ,
b) ,
c) .
У яких випадках систему можна вважати жорсткою?
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.