Физика: Методические указания к лабораторным работам (Эффект Холла в полупроводниках . Измерение температуры нагретых тел с помощью радиационного пирометра. Изучение работы оптического квантового генератора (лазера). Исследование люминесценции кристаллофосфоров), страница 21

Таким образом, в создании собственной электропроводимости полупроводников участвуют два вида носителей заряда - электроны и дырки. Величина удельной электропроводности s  собственного полупроводника зависит от их концентрации п (числа в единице объема) и подвижности u, под которой понимается средняя дрейфовая скорость, приобретаемая электронами и дырками в электрическом поле единичной напряженности. Очевидно, что в собственном полупроводнике концентрация дырок равна концентрации электронов в зоне проводимости, и собственная электропроводность полупроводника

s = en(un + up),                                       (16)

где e – заряд электрона; un и up – подвижности электронов и дырок соответственно.

При увеличении температуры число электронов, способных перейти запрещенную зону, увеличивается, и поэтому их концентрация в зоне проводимости собственного полупроводника возрастает:

n ~ exp[-Еg/(2kT)],                                 (17)

где Еg – ширина запрещенной зоны; k = 1,38×10-23 Дж/К – постоянная Больцмана, T – абсолютная температура.

Подвижность носителей заряда зависит от температуры значительно слабее, чем их концентрация. Вследствие этого зависимость s(T) собственного полупроводника определяется зависимостью п(Т) и является экспоненциальной:

s(T) = s0C×exp[ -Еg/(2kT)],                             (18)

где s0C – слабо зависящий от температуры множитель.

Из формулы (18) следует, что логарифм удельной электропроводности ln [s(T)] является линейной функцией от 1/2:

ln[s(T)] = ln[s0C] - ,

или, введя обозначения y = ln [s(T)],  x = 1/2   и  a = ln[s0C]:

y= a- Еg×x.                                          (19)

Графиком зависимости y(x) является прямая; это означает, что ширину запрещенной зоны можно вычислить, определив тангенс угла наклона данной прямой к оси абсцисс.

До сих пор мы говорили о собственной проводимости полупроводника, однако, введение в него примеси может существенным образом сказаться на его электрических свойствах. Для выяснения механизма примесной проводимости рассмотрим, что происходит при введении атомов из пятой и третьей групп таблицы Менделеева в германий – элемент четвёртой группы.

На внешней электронной орбите атомы германия (Ge) имеют по четыре валентных электрона; при объединении атомов в кристаллическую решётку возникают ковалентные связи: электроны внешних орбит у соседних атомов попарно обобществляются. Но если в такую решётку ввести примесный атом с валентностью, равной пяти, например, фосфор (P), мышьяк (As) или сурьму (Sb), то, заняв в ней место одного из основных атомов и отдав четыре электрона соседям, такой атом всё равно будет иметь один «лишний» электрон, который способен оторваться от «хозяина» и свободно перемещаться по кристаллу германия. В частности, он может ускоряться электрическим полем, что, естественно, скажется на электропроводности образца. Добавочный электрон имеет отрицательный (negative) заряд, и поэтому подобный полупроводник называется полупроводником n-типа.

В терминах зонной теории этот процесс можно представить следующим образом. Локальный энергетический уровень этого электрона, связанный с наличием атома примеси, находится в запрещённой зоне недалеко от дна зоны проводимости (см. рис. 1). Достаточно небольшой порции энергии DЕДдля того, чтобыэлектрон оторвался от такого атома (донора – от англ. donor – жертвователь, донор) и приобрёл энергию, соответствующую свободному электрону (перешёл с донорного уровня в зону проводимости: переход 2 на рис. 1). Понятно, что это возможно, лишь если энергия DЕД не слишком велика (например, – сравнима с той, которая поставляется теплом). Если же примесные уровни размещаются далеко от дна зоны проводимости, то существенного влияния на электрические свойства кристалла они оказать не смогут.

В германии n-типа тепловой энергии даже при обычных температурах оказывается достаточной для того, чтобы перевести все электроны с примесных уровней в зону проводимости. Это означает, что, если примеси достаточно, концентрация примесных электронов в зоне проводимости во много раз превысит концентрацию собственных, и данный полупроводник будет обладать примесной электронной проводимостью.

Предположим теперь, что в решетке германия часть атомов Ge замещена атомами трехвалентного элемента, например, бора (B). Для образования связей с четырьмя ближайшими соседями у атома бора не хватает одного электрона. Поэтому одна из связей каждого из соседних атомов Ge оказывается неукомплектованной, способной захватить электрон. Данному состоянию соответствует уровень энергии, расположенный в запрещённой зоне вблизи потолка валентной зоны; состояние локализовано у атома бора. Уже при сравнительно небольшом тепловом возбуждении на этот уровень может быть захвачен электрон из валентной зоны (переход 3 на рис. 1), при этом в валентной зоне возникнет вакантное энергетическое состояние – дырка, которая, как мы говорили ранее, может рассматриваться в качестве положительно заряженной квазичастицы, способной ускоряться электрическим полем. В то же время электрон, оказавшийся связанным с атомом германия, теряет возможность свободного перемещения по кристаллу.

Таким образом, за протекание электрического тока в данном полупроводнике отвечают лишь дырки, поэтому его проводимость называют дырочной, а о полупроводнике говорят, что он принадлежит к p-типу (от слова positive– положительный). Примеси, захватывающие электроны из валентной зоны, называют акцепторами (от англ. toaccept – принимать), а их энергетические уровни – акцепторными. Расстояние от потолка валентной зоны до уровня акцептора (точнее – разница соответствующих энергий) на рис. 1 обозначено как DЕА.

Итак, наличие и характер примеси существенным образом влияют на электропроводность полупроводника: в собственном полупроводнике за неё ответственны как электроны, так и дырки, концентрации которых одинаковы, а в примесном (при не слишком высоких температурах) – только электроны (донорный полупроводник) или только дырки (акцепторный полупроводник).