Определение 12. Приведенной формой для формулы логики предикатов называется такая равносильная ей формула, в которой из операций алгебры высказываний имеются лишь операции а знаки отрицания относятся лишь к предикатным переменным или к высказываниям. Предварённой нормальной формой для формулы логики предикатов называется такая её приведенная форма, в которой все кванторы стоят в её начале, а область действия каждого из них распространяется до конца формулы (либо кванторы в формуле совсем отсутствуют).
Можно доказать [3, c. 158-159], что для каждой формулы логики предикатов существует предваренная нормальная форма.
Упражнения
1. Указать свободные и связанные переменные в следующих формулах:
Ответы: б) связанная переменная, свободная переменная;
в) связанная переменная, а формула служит примером приведенной нормальной формы формулы алгебры предикатов.
2. Интерпретация замкнутой формулы состоит из следующих шагов [2, c.107]:
1) задается множество
2) каждой предикатной букве, входящей в местный предикатный символ, ставится в соответствие местный предикат, определенный на
3) каждому нуль-местному предикатному символу приписывается одно из значений истинности.
Если формула – открытая, то добавляется ещё один шаг:
4)каждому свободному вхождению переменной ставится в соответствие элемент множества
Пример. Дать интерпретацию открытой формуле
1) Пусть
2) предикатной букве поставим в соответствие предикат, заданный таблицей
1 |
0 |
1 |
0 |
а предикатной букве – предикат, заданный таблицей
1 |
2 |
1 |
0 |
3) предикатному символу припишем значение 1 (истина);
4) свободному вхождению переменной припишем значение 1.
При такой интерпретации данная формула обращается в истинное высказывание. Действительно, существует такое, что истинно
Следовательно, посылка (антецедент) импликации принимает значение 1, а заключение (консеквент) тоже истинно. Значит, импликация истинна.
Дать интерпретации следующим формулам (см., например, [3, c. 144-145]:
3. Для следующих формул найти равносильную им приведенную форму:
Ответы:
4. Привести следующие формулы к предваренной (пренексной) нормальной форме:
Ответы:
Упражнения для самостоятельной работы
1. Указать свободные и связанные переменные в следующих формулах:
Ответы: и связанные переменные, свободная переменная.
и связанные переменные, свободная переменная.
2. Дать интерпретацию следующим формулам логики предикатов:
3. Для следующих формул найти равносильную им приведенную форму:
Ответы: Используя правило де Моргана для предикатов, имеем:
4. Привести следующие формулы к предварённой (пренексной) нормальной форме:
Ответы:
Занятие 6. Логика предикатов и алгебра множеств. Уравнения и
неравенства как логические функции (предикаты). Комплекс теорем в геометрии. Необходимые и достаточные условия
Тема «Уравнения и неравенства» лучше всего проясняется на основе понятия логической функции (предиката).
Рассмотрим вначале уравнения с одной переменной
Определение 13. Уравнением
(1)
называется одноместный предикат с (предметной) переменной имеющий вид равенства двух выражений, содержащих (предметную) переменную Множество решений уравнения (1) – это множество истинности предиката (1).
Всякий элемент называется решением (корнем) уравнения (1). Решить уравнение (1) – значит найти множество истинности предиката (1).
Два уравнения называются равносильными, если они представляют собой один и тот же предикат (логическую функцию). Отсюда следует, что у равносильных уравнений совпадают множества истинности.
Переход от одного уравнения к другому, равносильному первому, называется равносильным преобразованием.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.