|
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
|
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
|
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
|
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
|
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
Подключим к адресным входам мультиплексора 4x1 два аргумента, например и
. При таком подключении сигнал на адресном входе
совпадает с
, а на входе
с
. Поскольку на первых четырех
наборах
, то сигнал на
выходе мультиплексора совпадает с сигналом на шине
. Нижняя строчка таблицы на наборах 0, 1, 2, 3
показывает какой сигнал должен формироваться на шине
. Эти сигнал не постоянен, следовательно он
зависит от еще не учтенных аргументов
и
:
. Легко увидеть, что логика формирования сигнала
.
Рассуждая аналогично можно найти логику формирования
сигналов на остальных селектируемых шинах: ,
,
.
![]() |
|||
![]() |
№ набора |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
|
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
|
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
|
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
|
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
|
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
Сигнал на Сигнал на
Сигнал на
Сигнал на
![]() |
Сложность логики, формирующей сигналы на селектируемых входах, зависит от того, какие аргументы подключены к адресным входам. Оптимальную схему можно получить, выполнив синтез для всех возможных комбинаций адресных сигналов.
Если брать мультиплексор с числом адресных входов на единицу меньше, чем число аргументов функции, то для реализации функции потребуется мультиплексор и, возможно, один инвертор.
Пример: Реализовать функцию, заданную таблично
№ набора |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
|
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
|
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
|
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
|
1 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
![]() |
Заметим, что если бы на нулевом наборе функция была бы равна нулю, а на первом наборе – равна единице, инвертор не понадобился бы.
Функциональная полнота систем булевых функций.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.