[39] Besson, M., G. Fleche, et al. (1996). "Oxidation of glucose and gluconate on Pt, Pt Bi, and Pt Au catalysts." Recueil des Travaux Chimiques des Pays-Bas 115(4): 217-221.
[40] Gomes H.T., Orfao J. J. M., Figueiredo J. L., Faria J. L. 2004. CW AO of Butyric
Acid Solutions: Catalyst Deactivation Analysis. Ind. Eng. Chem. Res. 43: 1216.
[41] H.E. van Dam, P. Duijverman, A.P.G. Kieboom and H. van Bekkum. Pt/C oxidation catalysts. Part 2. Oxidation of glucose 1-phosphate into glucuronic acid 1-phosphate using diffusion stabilized catalysts. Appl. Catal., 33 (1987) 373.
[42] Y. Schuurman, B.F.M. Kuster, K. van der Wiele and G.B. Marin. Selective oxidation of methyl α-d-glucoside on carbon supported platinum: III. Catalyst deactivation. Appl. Catal. A, 89 (1992) 47.
[43] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, Nat. Assoc. Corrosion
Eng., Houston, 1974, p. 378.
[44] Okada, J., Morita, S., Matsuda, Y., Takenawa, T., Yakugaku Zasshi, 87 (11), 1326-33 (1967) (Jap.); CA, 68, 96063a
[45] De Wilt, H. G. J. The oxidarion of glucose. PhD thesis, University of Technology, Eindhoven, The Netherlands, 1969
[46] De Wilt, H.G.J., van der Baan H., Part II. Oxidation of Glucose to K-Gluconat. Platinum-Catalyzed Oxidation with Oxygen in Aqueous Alkaline Solutions. Ind. Eng. Chem. Prod. Res. Dev, 1972. 11(4): p. 374–378.
[47] M. Rottenberg and Baertschi, Helv. Chim. Acta, 227 (1956) 1073.
[48] Gangwal, V.R., et al., Noble-metal-catalysed aqueous alcohol oxidation: reaction start-up and catalyst deactivation and reactivation. Journal of Catalysis, 2005. 232(2): p. 432-443.
[49] G. de Wit, J.J. de Vlieger, A.C. Kock-van Dalen, R. Heus, R. Laroy, AJ. van Hengstum, A.P.G. Kieboom and H. van Bekkum. Catalytic dehydrogenation of reducing sugars in alkaline solution Carbohydr. Res., 91 (1981) 125.
[50] A.J. van Hengstum, A.P.G. Kieboom and H. van Bekkum, Starch, 36 (1984) 317.
[51] Tokarev A.V., Murzina E.V., Kuusisto J., Mikkola J.-P., Eranen K., Murzin D.Y. 2006. Kinetic behaviour of electrochemical potential in three-phase heterogencous catalytic oxidation reactions. J. Mol. Catal. A: Chemical 255: 205.
[52] L. Prati, M. Rossi, Stud. Surf. Sci. Catal. 110 (1997) 509–516.
[53] Mirescu, A. and U. Prüße, A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalysts. Applied Catalysis B, Environmental, 2007. 70(1): p. 644-652.
[54] Biella, S., L. Prati, and M. Rossi, Selective Oxidation of D-Glucose on Gold Catalyst. Journal of Catalysis, 2002. 206(2): p. 242-247.
[55] Comotti, M., Pina, C.D. et.al. The Catalytic Activity of "Naked" Gold Particles, Angew. Chem. Int. Ed., 2004. 43: p. 5812.
[56] Mirescu, A. and U. Prusze, Selective glucose oxidation on gold colloids. Catalysis Communications, 2006. 7(1): p. 11-17.
[57] Onal, Y., S. Schimpf, and P. Claus, Structure sensitivity and kinetics of d-glucose oxidation to d-gluconic acid over carbon-supported gold catalysts. Journal of Catalysis, 2004. 223(1): p. 122-133.
[58] Comotti, M., et al., Oxidation of alcohols and sugars using Au/C catalysts. Applied Catalysis A, General, 2005. 291(1): p. 204-209.
[59] Comotti, M., et al., Is the biochemical route always advantageous? The case of glucose oxidation. Journal of Catalysis, 2006. 244(1): p. 122-125.
[60] Mirescu, A., et al., Long-term stability of a 0.45% Au/TiO"2 catalyst in the selective oxidation of glucose at optimised reaction conditions. Applied Catalysis A, General, 2007. 317(2): p. 204-209.
[61] Thielecke, N., K.D. Vorlop, and U. Prusze, Long-term stability of an Au/Al"2O"3 catalyst prepared by incipient wetness in continuous-flow glucose oxidation. Catalysis Today, 2007. 122(3): p. 266-269.
[62] Baatz, C., N. Decker, and U. Prusze, New innovative gold catalysts prepared by an improved incipient wetness method. Journal of Catalysis, 2008. 258(1): p. 165-169.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.