Магнитомеханические явления. Электромагнитная индукция. Гармонические колебания. Затухающие колебания (Главы 4-7 учебного пособия по общей физике), страница 7

.

Если во втором контуре течёт изменяющийся ток I2, то эдс возникает в первом

.

Коэффициенты L12 и L21 называют взаимной индуктивностью контуров. Если форма контуров и m не изменяются, то L12 = L21.

Возникновение эдс в соседнем контуре называют взаимной индукцией. Контуры 1 и 2 в этом случае называют связанными.

Рассчитаем взаимную индуктивность двух катушек, намо-танных на тороидальный ферромагнитный сердечник. Исполь-зуем для этого теорему о циркуляции вектора напряжённости магнитного поля.

В качестве контура интегрирования выберем окружность, центр которой совпадает с центром тороидального сердечника.

В соответствии с теоремой о циркуляции вектора Н

Hl = N1.I1   и    ;

здесь l – длина контура интегрирования.

Магнитный поток через один виток

.

Магнитный поток через все витки второго соленоида

.

Отсюда взаимная индук-тивность второй катушки

.

Такое же выражение можно получить для L12

.

Обратите внимание на две важные детали.

Если общий сердечник двух соленоидов ферромагнитный, то его магнитная проницаемость зависит от напряжённости магнит-ного поля.

Во-первых, это означает, что взаимная индуктивность двух соленоидов при разных токах различна.

Во-вторых, если количество витков в катушках различно, то одинаковые токи в первой и второй катушках создают поля разной напряжённости. Поэтому магнитная проницаемость сердечника будет разной и при I1 = I2 взаимные индуктивности L12 и L21 не будут равны между собой.

5.5.  Ток смещения

Как уже отмечалось в разд. 5.1, изменяющееся магнитное поле порождает вихревое электрическое поле.

Максвелл предположил, что должно существовать и обратное явление – изменение электрического поля должно порождать магнитное поле.

Поэтому он поставил перед собой задачу – доказать, что изменяющееся электрическое поле порождает магнитное поле и объяснить механизм этого явления.

Рассмотрим решение этой задачи (проведённый далее анализ существенно упрощен, но полученные выводы будут пра-вильными).

Пусть имеется конденсатор, который заряжается от источника эдс.

Пока происходит заряд, в проводниках, соединяющих обкладки конденсатора с источником эдс, идёт ток прово-димости. Кроме этого, в процессе зарядки изменяется заряд на обкладках конденсатора и растёт напряжённость электрического поля между обкладками.

В разд. 1.22 показано, что напряжённость Е электрического поля внутри конденсатора равна  (здесь s – поверхност-ная плотность заряда на обкладках конденсатора, e – диэлектри-ческая проницаемость вещества между обкладками конден-сатора).

Из последнего выражения следует, что

eоeЕ = s.

В разд. 1.17 показано, что

eоeЕ = D,

т. е. произведение напряжённости электрического поля на электрическую постоянную и диэлектрическую проницаемость диэлектрика равно вектору электрического смещения. Это выражение можно переписать в скалярной форме: eоeЕ = D.

Но это означает, что s = D, т. е. поверхностная плотность заряда на обкладках конденсатора равна модулю вектора электрического смещения.

Продифференцируем последнее выражение по времени

(использование частных производных обусловлено тем, что поверхностная плотность заряда может зависеть не только от времени, но и от координаты).

Производная от поверхностной плотности заряда по времени есть плотность тока проводимости jпр =

Но тогда и правая часть равенства имеет размерность плотности тока.

Здесь следует обратить внимание на важную деталь.

В левой части равенства присутствует поверхностная плотность заряда s, изменение которой обусловлено упорядоченным движением свободных носителей заряда в проводниках, соединяющих обкладки конденсатора с источником эдс. Поэтому можно сказать, что левая часть равенства относится к той части цепи, в которой может протекать ток проводимости.