г) найдите (и сравните) оценки параметра L методом моментов и методом максимального правдоподобия, если известно, что выборка сделана из экспоненциального EL распределения;
д) найдите оценку параметра m методом моментов, если известно, что выборка сделана из нормального распределения N(m, 1)
е) найдите оценки параметров M и S любым известным методом, если известно, что выборка сделана из нормального распределения N(M, S);
ж) постройте гистограмму и полигон по выборке, количество интервалов — K;
з) в каждом из пунктов (а) — (е) оцените близость данного теоретического распределения к эмпирическому на основе критерия Пирсона; какое из распределений (а) — (е) лучше описывает выборку?
i1=-0,036;
i2=-0,809;
i3=0,315;
i4=-0,265;
i5=0,471;
i6=-0,386;
i7=0,576;
i8=-0,556;
i9=0,508;
i10=0,477;
K=3
Решение
а) найдите оценку параметра A методом моментов, если известно, что выборка сделана из равномерного распределения U(–1;A)
Решение. Известно, что
для равномерно распределенной на отрезке
случайной
величины математическое ожидание может быть вычислено по формуле
. Точеной
оценкой математического ожидания является среднее арифметическое
.
В нашем случае имеем ![]()
.
б) найдите оценку методом моментов параметра B, если известно, что выборка сделана из равномерного распределения U(-B;B).
Решение. Известно, что
для равномерно распределенной на отрезке
случайной
величины дисперсия может быть вычислено по формуле
. Точеной
оценкой дисперсии является выборочная дисперсия
.
В нашем случае имеем
![]()
![]()
![]()
![]()
![]()
![]()
![]()
в) найдите оценки методом максимального правдоподобия параметров c и C, если известно, что выборка сделана из равномерного распределения U(c; C);
Решение.
Запишем функцию плотности вероятностей

![]()
.
Пусть
,
тогда 
Составим функцию правдоподобия:
если
,
, …,
, т.е
, то
.
Если
, то
,
поскольку в этом случае хотя бы один из сомножителей
указанного
произведения обращается в нуль.
График функции правдоподобия при оценке параметра
равномерного распределения
имеет вид

Наибольшее значение функции правдоподобия находиться в
точке
, т.е. ![]()
![]()
.
г) найдите (и сравните) оценки параметра L методом моментов и методом максимального правдоподобия, если известно, что выборка сделана из экспоненциального EL распределения;
Решение. Пусть
наблюдаемая в эксперименте случайная величина
имеет
экспоненциальное распределение с плотностью

Применяя метод максимального правдоподобия, найдем
точечную оценку для параметра
.
Составим функцию правдоподобия
.
Применяя операцию логарифмирования, получаем
.
Следовательно, уравнение правдоподобия имеет вид
![]()
![]()
![]()
![]()

![]()
.
Применяя метод моментов, найдем точечную оценку для
параметра
.
Найдем математическое ожидание случайной величины, имеющей экспоненциальное распределение:

Так как точеной оценкой математического ожидания
является среднее арифметическое
,
то получаем
.
Применяя два различных метода, мы получили один и тот
же результат 
д) найдите оценку параметра m методом моментов, если известно, что выборка сделана из нормального распределения N(m, 1).
Решение. Пусть
непрерывная случайная величина распределена по нормальному закону с параметрами
и
.
Тогда плотность вероятности имеет вид
.
Найдем математическое ожидание случайной величины
:

.
Первый интеграл равен нулю как интеграл от нечетной
функции по симметричному относительно начала координат промежутку, второй
интеграл
-
интеграл Эйлера-Пуассона.
Так как точеной оценкой математического ожидания
является среднее арифметическое
,
то получаем 
е) найдите оценки параметров M и S любым известным методом, если известно, что выборка сделана из нормального распределения N(M, S);
Решение. Пусть
непрерывная случайная величина распределена по нормальному закону с параметрами
и
.
Тогда плотность вероятности имеет вид
.
Найдем математическое ожидание случайной величины
:

.
Первый интеграл равен нулю как интеграл от нечетной
функции по симметричному относительно начала координат промежутку, второй
интеграл
-
интеграл Эйлера-Пуассона.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.