Изучение физических процессов, происходящих при взаимодействии ускоренных ионов с нанокомпозитными материалами, страница 19

26.  Lach T.G. Role of Interfaces on the Trapping of He in 2D and 3D Cu-Nb Nanocomposites / T. G. Lach, E. Ekiz, R. S. Averback, N.A. Mara, P. Bellon // J. Nucl. Mater. – 2015.– Vol. 466. – pp. 36-42.

27.  Li N. He ion irradiation damage in AlNb multilayers / N. Li, M.S. Martin, O. Anderoglu, A. Misra, L. Shao, H. Wang, X. Zhang // J. Appl. Phys. – 2009.– Vol. 105. – pp. 123522(1-8).

28.  Milosavljevi´c M. A comparison of Ar ion implantation and swift heavy Xe ion irradiation effects on immiscible AlN/TiN multilayered nanostructures / M. Milosavljevi´c, A. Grce, D. Peruˇsko, M. Stojanovi´c, J. Kovaˇc, G. Draˇziˇc, A.Yu. Didyk, V. A. Skuratov // Materials Chemistry and Physics. – 2012.– Vol. 133. – pp. 884– 892.

29.  Perusko D. On the ion irradiation stability of Al/Ti versus AlN/TiN multilayers / D. Perusko, M.J. Webb, V. Milinovic´, B. Timotijevic´, M. Milosavljevic´, C. Jeynes, R.P. Webb // Nucl. Instr. Meth. Phys. Res. B. – 2008.– Vol. 266. – pp. 1749–1753.

30.  Kim I. Size-dependent radiation tolerance in ion irradiated TiN/AlN nanolayer films / I. Kim, L. Jiao, F. Khatkhatay, M.S. Martin, J. Lee, L. Shao, X. Zhang, J.G. Swadener, Y.Q. Wang, J. Gan, J.I. Cole, H. Wang // J. Nucl. Mater. – 2013.– Vol. 441. – pp. 47–53.

31.  Chen F. Formation of He-rich layers observed by neutron reflectometry in the He ions irradiated Cr/W multilayers: Effects of Cr/W interfaces on the He trapping behavior / F. Chen, X. Tang, H. Huang, X. Li, Y. Wang, Ch. Huang, J. Liu, H. Li, Da Chen // ACS Appl. Mater. Interfaces. – 2016.– Vol. 8. – pp. 24300–24305.

32.  Li N. He ion irradiation damage in Fe/W nanolayer films / Nan Li, E.G. Fu, H. Wang, J.J. Carter, L. Shao, S.A. Maloy, A. Misra, X. Zhang // J. Nucl. Mater. – 2009.– Vol. 389. – pp. 233–238.

33.  Wang H. Ion irradiation effects in nanocrystalline TiN coatings / H. Wang, R. Araujo, J.G. Swadener, Y.Q. Wang, X. Zhang, E.G. Fu, T. Cagin // Nucl. Instr. Meth. Phys. Res. B. – 2007.– Vol. 261. – pp. 1162–1166.

34. Вас Гэри С. Основы радиационного материаловедения. Металлы и сплавы. Москва: ТЕХНОСФЕРА, 2014. – 992 с.

35.  Зеленский В.Ф. Радиационные дефекты и распухание металлов / В.Ф. Зеленский, И.М. Неклюдов, Т.П. Черняева // Киев: Наук. Думка – 1988. – 294 с.

36.  ASTM E521-96 Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation. West Conchohocken: ASTM International – 1996. –  p. 21.

37.  Nordlund K. Molecular dynamics simulations of threshold displacement energies / K. Nordlund, J. Wallenius, L. Malerba // Nucl. Instrum. Methods Phys. Res. B. – 2006. – V. 246. – P. 322.

38.  Zepeda-Ruiz L.A. Molecular dynamics study of the threshold displacement energy in vanadium / L.A. Zepeda-Ruiz, S. Han, D.J. Srolovitz, R. Car // Phys. Rev. B. – 2003. – V. 67. – P. 134114.

39.  Wolfer W.G. Fundamental Properties of Defects in Metals / W.G. Wolfer // Comprehensive Nuclear Materials. – 2012. – V.1. – P.1.

40.  Комаров Ф.Ф. Дефекты структуры в ионоимплантированном кремнии / Ф.Ф. Комаров, А.П. Новиков, В.С. Соловьев, С.Ю. Ширяев // Минск: Унивеситетское – 1990. – 318 с.

41.  Lucas G. Ab initio molecular dynamics calculations of threshold displacement energies in silicon carbide / G. Lucas, L. Pizzagalli // Phys. Rev. B. – 2005. – V. 72. – P. 161202R.

42.  Lucas G. First-Principles Simulations of Frenkel Pair Formation and Annealing in Irradiated ß-SiC / G. Lucas, L. Pizzagalli // Nucl. Instrum. Methods Phys. Res. B. – 2005. – V. 229. – P. 359.

43.  Devanathan R. Displacement energy surface in 3C and 6H SiC / R. Devanathan, W.J. Weber // J. Nuclear Mater. – 2000. – V. 278. – P. 258.

44.  Lefevre J. Silicon threshold displacement energy determined by photoluminescence in electron-irradiated cubic silicon carbide / J. Lefevre, J.M. Costantini, S. Esnouf, G. Petite // J. Appl. Phys. – 2009. – V. 105. – P. 023520.

45.  Zhao S. Status of radioactive ion beams at the HRIBF / S. Zhao, J. Xue, C. Lan, L. Sun, X. Wang, S. Yan // Nucl. Instrum. Methods Phys. Res. B. – 2012. – V. 286. – P. 119.