 –
тангенс угла наклона β к оси ОУ, касательной к линии пересечения
поверхности
 –
тангенс угла наклона β к оси ОУ, касательной к линии пересечения
поверхности  и плоскости у = у0.
 и плоскости у = у0.
Физический смысл 
 - скорость изменения функции
 - скорость изменения функции  в направлении координатных осей.
 в направлении координатных осей.
Определение  Полным дифференциалом функции  называется главная линейная
относительно
 называется главная линейная
относительно  и
 и  часть
полного приращения функции
 часть
полного приращения функции  .
.
Пример    ;
;    
 

 ;
;   
 ;
;
dz γ
dz– содержит Δх, Δу только в первой
степени, это дифференциал z,
γ содержит Δх, Δу в старших степенях и является б.м. величиной более
высокого порядка, чем  , т.е.
, т.е. .
.
 , при этом
, при этом  – частный дифференциал функции z по х;
 – частный дифференциал функции z по х;   – частный дифференциал функции z по у.
 – частный дифференциал функции z по у.
По аналогии с функцией
одного переменного можно находить частные производные любого порядка  ;
;  ;
;
 ;
;  и
т.д. Для функций двух переменных в нашем курсе
 и
т.д. Для функций двух переменных в нашем курсе  ,
т.е. порядок дифференцирования не важен.
,
т.е. порядок дифференцирования не важен.
Пример :  ;
;
 ;
;   ;
; 
 ;
;   ;
; 
 ;
;   .
.
Определение  Функция  имеет max в т. M0 (х0, у0) Î D – области определения
 имеет max в т. M0 (х0, у0) Î D – области определения  ,
если существует окрестность т. M0, в которой для любой т. M (х, у) выполняется неравенство
,
если существует окрестность т. M0, в которой для любой т. M (х, у) выполняется неравенство  .
.
Если  в окрестности т. M0 (х0, у0), то говорим, что в т. M0 функция
 в окрестности т. M0 (х0, у0), то говорим, что в т. M0 функция  имеет min.
 имеет min.
 Примеры : 1)
Примеры : 1)  –
параболоид вращения, функция в т.О(0, 0) имеет min;
 –
параболоид вращения, функция в т.О(0, 0) имеет min;  .
.
В пространстве точка min – точка О(0,0,0) (рис. 11).
2)  или
 или
 – смещенный параболоид вращения (рис.
12). Функция z в т.А (0, 0, 1) имеет max.
– смещенный параболоид вращения (рис.
12). Функция z в т.А (0, 0, 1) имеет max.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.